ANTHROPOGENIC DISTURBANCE AND ENVIRONMENTAL ASSOCIATIONS WITH FISH ASSEMBLAGE STRUCTURE IN TWO NONWADEABLE RIVERS

T. P. PARKS ${ }^{\text {a* }}$, M. C. QUIST $^{\text {b }}$ AND C. L. PIERCE ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Natural Resource Ecology and Management, Iowa State University, Ames, Iowa, USA
${ }^{\mathrm{b}}$ US Geological Survey-Idaho Cooperative Fish and Wildlife Research Unit, Department of Fish and Wildlife Resources, University of Idaho, Moscow, Idaho, USA
${ }^{c}$ US Geological Survey-Iowa Cooperative Fish and Wildlife Research Unit, Department of Natural Resource Ecology and Management, Iowa State University, Ames, Iowa, USA

Abstract

Nonwadeable rivers are unique ecosystems that support high levels of aquatic biodiversity, yet they have been greatly altered by human activities. Although riverine fish assemblages have been studied in the past, we still have an incomplete understanding of how fish assemblages respond to both natural and anthropogenic influences in large rivers. The purpose of this study was to evaluate associations between fish assemblage structure and reach-scale habitat, dam, and watershed land use characteristics. In the summers of 2011 and 2012, comprehensive fish and environmental data were collected from 33 reaches in the Iowa and Cedar rivers of eastern-central Iowa. Canonical correspondence analysis (CCA) was used to evaluate environmental relationships with species relative abundance, functional trait abundance (e.g. catch rate of tolerant species), and functional trait composition (e.g. percentage of tolerant species). On the basis of partial CCAs, reach-scale habitat, dam characteristics, and watershed land use features explained $25.0-81.1 \%, 6.2-25.1 \%$, and $5.8-47.2 \%$ of fish assemblage variation, respectively. Although reach-scale, dam, and land use factors contributed to overall assemblage structure, the majority of fish assemblage variation was constrained by reach-scale habitat factors. Specifically, mean annual discharge was consistently selected in nine of the 11 CCA models and accounted for the majority of explained fish assemblage variance by reach-scale habitat. This study provides important insight on the influence of anthropogenic disturbances across multiple spatial scales on fish assemblages in large river systems. Copyright © 2014 John Wiley \& Sons, Ltd.

KEY WORDS: fish assemblage structure; longitudinal patterns; discharge; dams
Received 06 June 2014; Revised 29 August 2014; Accepted 09 September 2014

INTRODUCTION

Large rivers are characterized by high levels of fish and habitat diversity, yet they are also the focus of intense human activity (Karr et al., 1985; Hughes et al., 2005). The current status of riverine fish assemblages across North America can be generally considered poor (Rinne et al., 2005; Jelks et al., 2008; Burkhead, 2012). In general, lotic fish fauna in the central regions of the USA have experienced numerous declines, primarily because of anthropogenic alterations to rivers and their surrounding landscape (Karr et al., 1985; Hughes et al., 2005). To improve the conservation status of riverine fishes, it is critical to understand how fishes are influenced by dynamic river environments (Sparks, 1995; Hughes et al., 2005). Unfortunately, there is still an incomplete understanding about large-river ecology and how large-river ecosystems respond to anthropogenic disturbance (Johnson et al., 1995; Sparks, 1995; Allan, 2004). Historically, research on fishes in lotic systems has focused on wadeable streams

[^0]because of the ease of sampling fishes in small streams compared with large, nonwadeable rivers (Johnson et al., 1995; Flotemersch et al., 2006). However, recent research on measurements of large-river biotic integrity (Lyons et al., 2001), sampling methodologies (Herzog et al., 2005; Flotemersch et al., 2006), and numerous efforts to model environmental relationships with fishes (Weigel et al., 2006; Neebling and Quist, 2010) have improved our understanding of fish ecology and management of nonwadeable rivers. Because of the widespread influence of human activities associated with the decline of riverine fish species, understanding the relationships between fishes and environmental factors in rivers is critical (Johnson et al., 1995; Allan, 2004; Hughes et al., 2005; Jelks et al., 2008).

Lotic systems, particularly in the Midwest, have a long history of disturbance and degradation from cumulative human activities (Karr et al., 1985). Anthropogenic activities such as land use (e.g. agricultural, urban, and industrial land use), channel modification, water development (e.g. dams, reservoirs, and levees), pollution, and the introductions of non-native species have been attributed to the decline of native fish assemblages and reduction of habitat quantity and quality in rivers throughout the Midwest (Rinne et al., 2005).

In Iowa and much of the Midwest, agricultural and urban watershed land use are important sources of pollution, sedimentation, and hydrologic disturbance in streams, all of which have been attributed to biological impairment (Wang et al., 1997; Heitke et al., 2006; Rowe et al., 2009). Although urban and agricultural land uses are common alterations in watersheds, dams are considered one of the most pervasive disturbances affecting lotic ecosystems (Dynesius and Nilssen, 1994; Ward and Stanford, 1995). Dams can alter natural flow regimes (Poff and Allan, 1995; Poff et al., 1997), transform habitats immediately upstream and downstream of dams, and cause shifts in species composition (Quist et al., 2005; Chick et al., 2006) and trophic and spawning guild structure (Kinsolving and Bain, 1993; Guenther and Spacie, 2006). Dams can also influence fish assemblages in river reaches not in the immediate vicinity of dams or impoundments (Kinsolving and Bain, 1993; Falke and Gido, 2006; Weigel et al., 2006; Wang et al., 2011). One of the most notable effects of dams is how dams fragment habitat and limit the dispersal and distribution of fishes (Freeman et al., 2003; Santucci et al., 2005; Pierce et al., 2013). Previous studies on human disturbance in small lotic systems in the Midwest (Karr et al., 1985, Hughes et al., 2005) have made it apparent that fish assemblages and habitats have been long affected by watershed land use and water development.

Fish assemblage structure is governed by processes and habitat across multiple spatial and temporal scales. At a local scale, elements of the flow regime (Poff et al., 1997; Pyron and Lauer, 2004), channel morphology and geomorphic factors (Peterson and Rabeni, 2001; Pierce et al., 2013), substrate composition, instream cover, and bank condition have shown to be determinants of taxonomic and functional patterns exhibited by riverine fishes (Eitzmann and Paukert, 2010; Neebling and Quist, 2010). Components of local habitat tend to vary longitudinally and are reflected in broad patterns of fish assemblage structure (Vannote et al., 1980; Junk et al., 1989; Matthews, 1998; McGarvey and Ward, 2008; McGarvey, 2011). Spatial differences in habitat and fish assemblages become more apparent and complex when the flow regime is considered (Roberts and Hitt, 2010; Hitt and Roberts, 2012). For instance, upstream habitats tend to have greater flow variability than downstream environments (Schlosser, 1990; Poff et al., 1997). Depending on the degree of spatiotemporal variability exhibited by the river environment, fish life history and other functional trait variation can correspond strongly to these environmental patterns (Schlosser, 1990; Poff, 1997; Mimms and Olden, 2012). Human disturbances like dams and land use can disrupt longitudinal patterns in habitat conditions and fish assemblage structure (Chick et al., 2006; Miranda et al., 2008; McGarvey, 2011), artificially increase hydrologic variability in the environment (Poff and Allan, 1995), or even homogenize habitat
(Poff et al., 1997). The influence of land use (Heitke et al., 2006; Rowe et al., 2009) and disturbance from dams (Gelwicks, 2007; Pierce et al., 2013) in Iowa has been partially disentangled from the effects of local habitat on lotic fishes in small streams, but the relative influence of disturbance and local habitat on fish assemblages remains relatively unknown in Iowa's large rivers.

The purpose of this study was to evaluate relationships between fish assemblage structure and environmental characteristics in two large nonwadeable rivers in Iowa. We sought to describe these relationships and compare the relative influence of watershed land use, dams, and reachscale habitat factors on fish assemblage structure. To accomplish this objective, fish and environmental data were collected from the Cedar and Iowa rivers. Species-level descriptors and functional or autoecological traits (e.g. life history strategies and habitat use guilds) were used to describe structural associations between fish assemblages and environmental factors. We expected that variation in fish assemblages would be explained by both reach-scale habitat and watershed characteristics. In addition, we hypothesized that factors related to dams would explain as much or more of the variation in fish assemblage structure than land use features.

METHODS

Study area and survey design

This study was conducted in the Cedar and Iowa rivers, located within the upper Mississippi River basin of easterncentral Iowa. These two nonwadeable rivers flow northwest to southeast and altogether drain about a third of Iowa $\left(32430 \mathrm{~km}^{2}\right)$. The Cedar and Iowa rivers eventually meet and flow together for about 45 km to their confluence with the Mississippi River (Figure 1). During the summers of 2010 and 2011, data on fish and local habitat characteristics were collected from 33 mainstem sampling reaches (18 reaches in the Cedar River and 15 reaches in the Iowa River; Figure 1). Sampling reaches in both rivers were located upstream of the confluence of the Cedar and Iowa Rivers. To adequately describe the spatial distribution of fish species and environmental gradients along a river profile, sampling reaches were systematically established every $36-40 \mathrm{~km}$ along the entire length of each river. On the basis of the portion of each river considered to be nonwadeable (fourth to eighth Strahler stream order) and sampling logistics, 22 sampling reaches (each $\sim 4 \mathrm{~km}$ in length) were systematically established in the Cedar and Iowa Rivers. Eleven additional sampling reaches were randomly placed $0-10 \mathrm{~km}$ upstream (reservoir environments were not sampled) or downstream of dams to further assess the influence of dams on fish assemblages.

Figure 1. Map of 33 reaches where fish and reach-scale habitat were sampled along the Cedar and Iowa Rivers, Iowa, during 2010 and 2011

Fish assemblages

Fish assemblages were sampled using boat-mounted electrofishing and benthic trawling methods following the methods of Neebling and Quist (2010). At each reach, five $500-\mathrm{m}$ boat-mounted electrofishing runs (2500 m total distance) were randomly established between 14 sections (each 100 m in length) reserved for 42 trawl runs. Three trawl runs (each 50 m in length) were performed in the channel in each $100-\mathrm{m}$ section of the river. Boat-mounted electrofishing was performed during daytime hours in a downstream direction using a VVP-15B (Smith-Root Inc., Vancouver, WA, USA). Direct current was pulsed at $40-60 \mathrm{~Hz}$, and power output was standardized to 3000 W . Boat-mounted electrofishing was performed with an operator and two netters using dip nets (6.3 mm delta, knotless mesh). Electrofishing was used to sample fish in a variety of habitats along the channel border. Trawling was performed during the day by hauling HerzogMissouri trawls in a downstream direction at velocities slightly faster than the river current. Trawls sampled fish in benthic habitats in the thalweg and along its outer margins. HerzogMissouri trawls were towed with 21.7 -m-long towlines that provided a $7: 1 \mathrm{~m}$ drop ratio (maximum depth $=3.1 \mathrm{~m}$). Herzog-Missouri trawls have a larger ($34.9-\mathrm{mm}$ bar) outer mesh and a smaller (6.3 mm delta, knotless) inner mesh to efficiently sample both small-bodied and large-bodied fishes. Design and operation of Herzog-Missouri trawl can be found in the work of Herzog et al. (2005). Effort for each sampling run was recorded as time electrofished (hours) and distance trawled (metres). After each electrofishing or trawling run, sampled fishes were identified to species and enumerated. Unidentified specimens, as well as voucher specimens, were euthanized with MS-222 and preserved in 10% formalin.

Environmental data

Local environmental characteristics were measured and summarized at each fish sampling reach following Neebling and Quist (2010) who adapted methods used in the US Environmental Protection Agency's nonwadeable river protocol (Flotemersch et al., 2006) and the Iowa Department of Natural Resources (DNR) wadeable streams physical habitat assessment (Wilton, 2004). Habitat measurements described channel geomorphology, substrate composition, instream cover, and bank and riparian characteristics. Reach-scale habitat was sampled along 20 evenly spaced transects between the borders of each fish sampling reach. At each transect, bankfull width (m) was measured using a digital rangefinder. Depth (m), current velocity $\left(\mathrm{m} \mathrm{s}^{-1}\right)$, substrate composition, and instream cover were measured at seven evenly spaced locations along each transect. Depths were measured to the nearest decimetre using a sounding pole. Depths were taken at permanent physical references (e.g. bridge pylon) during fish sampling events to account for changes in river stage occurring between fish sampling and habitat sampling events. Substrate composition was estimated as the percentage of clay and silt ($\leq 0.06 \mathrm{~mm}$), sand $(0.07-2 \mathrm{~mm})$, gravel ($3-64 \mathrm{~mm}$), cobble ($65-255 \mathrm{~mm}$), boulder ($\geq 256 \mathrm{~mm}$), or bedrock (Orth and Maughan, 1982). Current velocity $\left(\mathrm{m} \mathrm{s}^{-1}\right)$ was measured at each of the seven transect locations using a Marsh-McBirney Flow-Mate 2000 (MarshMcBirney Inc., Loveland, CO, USA). At each location, current velocity was measured at 20% and 80% of the depth when depth $\geq 1.0 \mathrm{~m}$ and at 60% when depth $<1.0 \mathrm{~m}$ (Fitzpatrick et al., 1998). Visible instream cover (large woody debris, vegetation, rock debris, and artificial debris) was measured as the per cent of instream cover along the length of the river transect. Canopy cover and bank condition were measured at the endpoint of each transect. Canopy cover, expressed as an aerial percentage of the overhanging canopy, was measured facing the bank at each transect using a spherical densiometer. Bank condition was measured as the percentage of shoreline rocky rip-rap in each reach (Eitzmann and Paukert, 2010). The length of downstream shoreline rip-rap was measured to the nearest 0.5 m using a digital rangefinder (maximum length of 200.0 m per bank). Conductivity ($\mu \mathrm{Scm}^{-1}$) was measured before and after electrofishing runs using an EC400 ExStik II conductivity meter (Extech Instruments, Nashua, NH, USA). Streamflow conditions, describing flow magnitude and variability, were quantified as mean annual discharge $\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ and the coefficient of variation of annual discharge values (hereafter referred to as the annual discharge CV), respectively. Mean annual discharge and the annual discharge CV values were calculated using Indicators of Hydrologic Alteration (Richter et al., 1996) with 20 years of available daily flow data (1990-2011; 20 water years) from 12 US Geological Survey (USGS) gauging stations. Mean annual discharge
values were interpolated for all study reaches using the drainage area upstream of each site. Annual discharge CV values were used to generally describe the overall spatial pattern of flow variation and were not included in further analyses. Variables associated with dams were derived using a geographical information system (GIS; ArcGIS 9.3, ESRI, Redlands, CA, USA). Data on dams were obtained from a state dam inventory layer available from the Iowa DNR GIS library (IDNR, 2004). Dam locations were superimposed over a map layer of river and stream networks sourced from a 1:100000 scale National Hydrography Dataset (NHD; USGS, 2004). Spatial characteristics of dams were similar to those in the works of Weigel et al. (2006) and Wang et al. (2011), where the effects of dams were characterized relative to the network position of each fish sampling reach. Distance (rkm) to upstream dam and distance to downstream dam impoundment were determined for each fish sampling reach. To quantify fragment size, mainstem channel length (rkm) free of dams was measured for each sampling reach (i.e. sum of reach distance to upstream dam and distance to downstream dam impoundment; Perkin and Gido, 2011).

Land cover characteristics were also analysed using a GIS to describe land use percentages within local catchments and basins. Methods similar to that of Rowe et al. (2009) were employed to determine catchment areas and land cover percentages. Basins (i.e. network catchments) were defined as the total upstream watershed area draining into each sampling reach. Basins describe the cumulative influence from the landscape encompassing a river network, upstream of each sampling reach. Local catchment areas were defined as a river's lateral drainage area confined by the upstream and downstream boundaries of each sampling reach and by the drainage boundaries determined by river network (i.e. catchment boundaries set by the NHD from digital elevation models). Local catchments describe the immediate landscape (i.e. riparian and valley area) that contributes runoff along the length of the sampling reach. A digital elevation model ($30-\mathrm{m}$ resolution) joined to a 1:100000 scale NHD coverage was used to delineate basin and local catchment areas using Arc Hydro tools (available in ArcGIS 9.3, ESRI, Redlands, CA). Land cover raster data (2006 National Land Cover Dataset; Fry et al., 2011) were superimposed onto catchment delineations to calculate land use percentages. A suite of natural and anthropogenic land cover variables were derived for each catchment including per cent agricultural, urban, grassland, wetland, and forest land cover.

Data analysis

Fifty-four candidate environmental variables (26 reach-scale, 7 dam-related, and 16 land use variables) were initially considered for investigation, but the number was reduced to avoid issues of multicollinearity. Pearson's correlation coefficients were calculated for all pairs of environmental variables to
identify sources of redundancy among correlated variables. Highly correlated variables were considered to have a Pearson's $r \geq|0.70|$. An example of a variable that was redundant with other variables is mean annual discharge. Mean annual discharge was highly correlated with 10 variables, including basin drainage area; per cent grassland, forest, and wetland land use in basin catchments; per cent grassland and agricultural land use in local catchments; and the density and number of upstream and downstream dams. Consequently, mean annual discharge was retained. Because of all of the initial 54 variables were considered 'ecologically relevant', we retained as many variables as possible. Environmental variables were also reduced by aggregating correlated variables into composite variables. Composite variables such as per cent coarse substrate (i.e. substrates $>2 \mathrm{~mm}$ in diameter) and percentage of basin agricultural land use (i.e. row crop and pasture) were created to retain as much habitat information as possible. The final set of variables used in the analysis included 21 environmental variables that were not highly correlated with one another (i.e. $r \leq|0.70|$; Table I).

Fish assemblage structure was described using species relative abundance, and the relative abundance and richness measures of several functional trait classifications. Functional trait classifications included tolerance guilds (Wilton, 2004), life history strategies (Winemiller and Rose, 1992), and habitat use guilds (Kinsolving and Bain, 1993; Galat and Zweimuller, 2001). Tolerance guilds were defined as fish species tolerant, moderately tolerant, and intolerant of environmental degradation (Wilton, 2004). Fish life history strategies were classified using methods described by Olden and Kennard (2010) following the Winemiller and Rose (1992) life history model. Life history strategies typically have been used to describe a species response to disturbance and other hydrodynamic changes in the environment (Poff, 1997; Olden and Kennard, 2010; Mimms and Olden, 2012). Life history strategies were based on length at maturity, fecundity, ovum diameter, and parental care data from Becker (1983) and Carlander (1969, 1977, 1997). Using these life history traits, species were either classified by their primary affinity with a single life history strategy (e.g. periodic, opportunistic, or equilibrium) or by their intermediate affinity between two strategies (e.g. opportunistic-periodic; Hoeinghaus et al., 2007; Olden and Kennard, 2010). Habitat use guild classifications were defined as those fish species requiring free-flowing lotic habitats to complete all (i.e. fluvial specialists) or a portion of their life history (i.e. fluvial dependents), or fish species that generalize across habitats and are capable of completing their life history in lentic habitats (i.e. macrohabitat generalists; Kinsolving and Bain, 1993; Galat and Zweimuller, 2001).

Relative abundance was calculated as catch per unit effort (CPUE) by species and functional trait classification and was calculated separately for electrofishing and trawling

Table I. Summarized reach, dam, and landscape environmental characteristics measured from 33 sites in the Cedar and Iowa Rivers, Iowa, during 2010 and 2011

| | | | | |
| :--- | :--- | ---: | ---: | ---: | ---: |
| Variable and description | | | Standard | |
| deviation | | | | | Minimum Maximum

${ }^{\text {a }}$ Annual discharge coefficient of variation calculated by Indicators of Hydrologic Alteration as a dimensionless value. Additionally, the annual discharge coefficient of variation was only calculated for 12 US Geological Survey gauging stations to generally describe overall flow patterns and was not included in the analyses.
data. Electrofishing CPUE was calculated as the number of fish caught per hour of electrofishing (fish ${ }^{-1}$). Trawling CPUE was calculated as the number of fish caught per $50-\mathrm{m}$ trawl haul. Additionally, fish assemblage structure was described by the percentage of species present representing a specific functional trait (Pool et al., 2010), hereafter referred to as per cent composition of functional traits. Per cent composition datasets were created for tolerance guilds, life history strategies, and habitat use guilds using species presence-absence data aggregated from electrofishing and trawling data.

Before multivariate analyses were performed, spatial patterns in species occurrence were screened to observe if dams were acting as possible barriers to fish movement. Dams can only be inferred as barriers when species distributions appear to be truncated (Santucci et al., 2005). Truncated species distributions were defined as species only occurring downstream of dams. Historical data from Loan-Wilsey et al. (2005) were used to confirm the validity of truncated species distributions.

Canonical correspondence analyses (CCAs) were performed to examine the relationships between fish assemblage structure (i.e. taxonomic and trait data) with environmental variables at multiple spatial scales. Count data were \log transformed
$[\log (x+1)]$, and percentage data were arc-sine square root transformed to help meet assumptions of the model (Legendre and Legendre, 1998). Species occurring at less than three reaches (i.e. 10% of reaches) were excluded from analyses to reduce the influence of rare species (Legendre and Legendre, 1998). Separate CCAs were performed for electrofishing CPUE, trawling CPUE, and trait richness datasets. CCAs were conducted using a forward-selection procedure with Monte Carlo permutation tests (1000 permutations) to identify and retain environmental variables significantly $(p \leq 0.05)$ explaining variation in fish assemblage structure among data sets (ter Braak and Smilauer, 2002). Variance inflation factors were assessed in each model to reduce the possibility of over-fitting the CCA models. Only environmental variables with variance inflation factors <10 were retained in CCA models (ter Braak and Smilauer, 2002). Environment-fish assemblage relationships were depicted in ordinations using the first two CCA ordination axes. In all cases, the third axis described a limited amount of model variance ($\leq 10 \%$ of total variance).

Partial CCAs (pCCAs) were used to partition fish assemblage variation explained by groups of interrelated environmental variables. Specifically, pCCAs were used to determine the relative importance of reach-scale habitat, dam, and land
use environmental variables (Pool et al., 2010; Wang et al., 2011). The pCCAs were performed by partitioning the total inertia (i.e. χ^{2} distance) or total variance in fish assemblages constrained by each set of environmental variables in each of the previously created CCA models (Legendre and Legendre, 1998). The proportion of constrained inertia explained by each group of environmental characteristics was expressed as the percentage of explained assemblage variation (ter Braak and Smilauer, 2002). Similar to Pool et al. (2010) and Wang et al. (2011), percentages representing reach-scale, dam, and land use variables were graphically depicted for each CCA model to compare the relative importance of each set of environmental factors on fish assemblage characteristics. Additionally, we also assessed the percentages of assemblage variation explained by individual environmental variables to better understand the most likely environmental drivers of fish assemblage structure. All CCA ordinations and pCCA analyses were performed using the Vegan package in R (R Development Core Team, 2011).

RESULTS

During the summers of 2010 and 2011, 16,033 fish were sampled using boat-mounted electrofishing and 21,201 fish were sampled using benthic trawls in the Cedar and Iowa rivers. Gizzard shad Dorosoma cepediamum $(3,229)$, spotfin shiner Cyprinella spiloptera $(2,459)$, golden redhorse Moxostoma erythrurum $(1,511)$, and common carp Cyprinus carpio $(1,452)$ dominated the electrofishing catch. Sand shiner Notropis stramineus $(8,834)$, bigmouth shiner Notropis dorsalis $(1,686)$, channel catfish Ictalurus punctatus $(3,763)$, and banded darter Etheostoma zonale $(1,309)$ dominated samples with the trawl. Eighty-five species and two hybrids were sampled in total (Table II). Species richness varied from 18 to 43 species per reach in the Iowa River and 26 to 43 species per reach in the Cedar River (Figure 2, top panels). Although species richness did not change consistently with longitudinal position in either river, longitudinal variations in fish assemblages were apparent through patterns of trait composition (Figure 2, lower panels).

Abrupt shifts in species composition occurring in downstream river reaches appeared to characterize fragmentation from dams. Truncated distributions of several species occurred in river reaches below the furthest downstream dam in each river (Table III). Thirteen species were not sampled upstream of the Burlington Street Dam on the Iowa River, including shovelnose sturgeon Scaphirhynchus platorynchus, longnose gar Lepisosteus osseus, shortnose gar Lepisosteus platostomus, bowfin Amia calva, mooneye Hiodon tergisus, shoal chub Macrhybopsis hyostoma, emerald shiner Notropis atherinoides, river shiner Notropis blennius, mimic shiner

Notropis volucellus, channel shiner Notropis wickliffi, blue sucker Cycleptus elongatus, western sand darter Ammocrypta clara, and sauger Sander canadensis. Similarly, eight species were not sampled upstream of the Cedar Rapids Milldam on the Cedar River including longnose gar, shortnose gar, goldeye Hiodon alosoides, mooneye, Mississippi silvery minnow Hybognathus nuchalis, silver chub Macrhybopsis storeriana, emerald shiner, and sauger.

Twenty-one of the fifty-four environmental variables were retained for analysis and varied among study reaches (Table I). Mean annual discharge $\left(2106 \pm 1520 \mathrm{~m}^{3} \mathrm{~s}^{-1}\right.$; mean \pm standard deviation), bankfull width ($97.0 \pm 46.3 \mathrm{~m}$), conductivity ($547.0 \pm 55.5 \mu \mathrm{Scm}^{-1}$), and per cent coarse substrate ($23.6 \pm 19.8 \%$) exhibited the most inter-reach variation among reach-scale characteristics. Among the variables associated with dams, mainstem fragment length $(128.2 \pm 122.0 \mathrm{~km})$, distance to upstream dam (51.0 $\pm 92.8 \mathrm{~km}$), and distance to downstream dam impoundment $(58.0 \pm 63.2 \mathrm{~km})$ varied among study reaches. Percentages of wetland cover $(22.0 \pm 23.8 \%)$, forest ($10.0 \pm 15.9 \%$), and urban $(17.7 \pm 23.6 \%)$ land use in local catchments exhibited the most inter-reach variation among land use variables, whereas percentages of agricultural ($82.4 \pm 2.4 \%$) and urban $(8.0 \pm 0.7 \%)$ land use measured at the basin scale were fairly constant. Several environmental characteristics exhibited some degree of longitudinal variation, including the percentage of basin agriculture, conductivity, canopy cover, mean bankfull width, and mean annual discharge; yet, no major correlation occurred among these variables ($r<|0.70|$). Similarly, indicators of hydrologic alteration analysis calculated annual discharge CV values, which exhibited a strong negative correlation ($r=-0.88$) with mean annual discharge at the USGS gauge locations, where upstream USGS gauges recorded greater flow variability over time (e.g. 05458500Cedar River at Janesville, annual CV =1.61; 05451500Iowa River at Marshalltown, annual $\mathrm{CV}=1.51$) compared with the more stable flows recorded at downstream gauges (e.g. 05465000-Cedar River at Conesville, annual $\mathrm{CV}=1.19$; 05455700-Iowa River at Lonetree, annual $\mathrm{CV}=1.18$).

Taxonomic abundance models

Environmental characteristics explained slightly more variation in taxonomic abundance in the electrofishing CCA model (57.3% of total variance) than the trawling CCA model (53.3%; Figure 3). Forward selection retained seven environmental variables that significantly explained ($p<0.05$, based on Monte Carlo simulations) patterns of species abundance in the electrofishing CCA. The positions occupied by species in ordination space described a longitudinal pattern in the distribution of species (left to right) along Axis 1. Axis 1 represented a gradient of discharge,
Table II. Summary of per cent occurrence and mean $(S D)$ catch rates for fish species sampled in the Iowa and Cedar Rivers, Iowa, during 2010 and 2011

Family and species	Scientific name	Abbreviation	Iowa River ($n=15$)			Cedar River ($n=18$)		
			Per cent	Electrofishing	Trawling	Per cent	Electrofishing	Trawling
Acipenseridae								
Shovelnose sturgeon ${ }^{\text {a }}$	Scaphirhynchus platorynchus	snsg	20	0.83 (3.06)	0.01 (0.03)	28	0.41 (1.03)	0.01 (0.02)
Lepisosteidae								
Longnose gar ${ }^{\text {a }}$	Lepisosteus osseus	lngr	13	0.26 (0.75)	0.00 (0.01)	17	0.80 (2.75)	0.00 (0.01)
Shortnose gar	Lepisosteus platostomus	sngr	20	2.86 (6.35)	-	17	2.12 (5.18)	0.00 (0.01)
Amiidae								
Bowfin ${ }^{\text {a }}$	Amia calva	bwfn	7	0.08 (0.29)	-	0	-	-
Hiodontidae								
Goldeye ${ }^{\text {a }}$	Hiodon alosoides	gdey	0	-	-	6	0.04 (0.16)	-
Mooneye	Hiodon tergisus	mney	7	0.11 (0.44)	0.00 (0.01)	11	0.23 (0.81)	-
Clupeidae								
Gizzard shad	Dorosoma cepedianum	gzsd	73	121.85 (273.53)	0.01 (0.03)	50	16.19 (38.12)	-
Cyprinidae								
Central stoneroller	Campostoma anomalum	cnsr	13	1.02 (2.98)	0.00 (0.01)	11	0.39 (1.45)	0.00 (0.01)
Goldfish ${ }^{\text {b }}$	Carassius auratus	gdfh	13	0.40 (1.40)	-	11	0.30 (0.90)	-
White amur ${ }^{\text {b }}$	Ctenopharyngodon idella	gscp	27	0.27 (0.50)	-	11	0.08 (0.26)	-
Spotfin shiner	Cyprinella spiloptera	sfsn	100	67.56 (77.45)	0.18 (0.25)	89	36.22 (39.37)	0.32 (0.37)
Common carp ${ }^{\text {b }}$	Cyprinus carpio	crap	100	33.32 (10.60)	-	100	29.14 (24.96)	-
Gravel chub ${ }^{\text {a }}$	Erimystax x-punctatus	gvcb	0	-	-	56	-	0.10 (0.17)
Brassy minnow	Hybognathus hankinsoni	bsmw	40	1.35 (3.01)	0.02 (0.03)	0	-	-
Mississippi silvery minnow ${ }^{\text {a }}$	Hybognathus nuchalis	svmw	0	(3.01)		6	-	0.00 (0.01)
Common shiner	Luxilus cornutus	cmsn	27	3.96 (9.59)	0.04 (0.13)	22	3.32 (7.58)	0.04 (0.15)
Shoal chub	Macrhybopsis hyostoma	skcb	20	-	0.15 (0.39)	44	-	0.36 (1.06)
Silver chub	Macrhybopsis storeriana	svcb	67	0.31 (0.60)	0.29 (0.28)	17	-	0.01 (0.01)
Hornyhead chub	Nocomis biguttatus	hhcb	27	1.22 (3.12)	0.03 (0.12)	39	5.72 (15.62)	0.08 (0.19)
Golden shiner	Notemigonus crysoleucas	gdsn	7	0.04 (0.16)	-	11	0.12 (0.37)	-
Emerald shiner	Notropis atherinoides	emsn	20	0.74 (2.07)	0.38 (1.41)	11	1.38 (4.64)	0.01 (0.04)
River shiner	Notropis blennius	rvsn	7	-	0.00 (0.01)	22	-	0.06 (0.16)
Bigmouth shiner	Notropis dorsalis	bmsn	80	3.60 (5.71)	1.85 (2.87)	50	2.83 (10.85)	0.67 (1.45)
Ozark minnow ${ }^{\text {a }}$	Notropis nubilus	ozmw	0	-	-	17	0.26 (0.80)	0.02 (0.08)
Rosyface shiner	Notropis rubellus	rysn	20	0.46 (0.96)	0.00 (0.01)	56	8.56 (16.08)	0.13 (0.31)
Sand shiner	Notropis stramineus	snsn	80	2.92 (4.35)	1.10 (1.39)	100	2.87 (4.94)	10.44 (15.10)
Mimic shiner	Notropis volucellus	mmsn	20	-	0.03 (0.08)	0	-	-
Channel shiner	Notropis wickliffi	cnsn	13	-	0.01 (0.04)	0	-	-
Suckermouth minnow	Phenacobius mirabilis	smmw	20	0.46 (1.21)	0.00 (0.01)	17	-	0.00 (0.01)
Southern redbelly dace ${ }^{\text {a }}$	Phoxinus erythrogaster	srbd	0	-	-	11	0.42 (1.63)	-
Bluntnose minnow	Pimephales notatus	bnmw	60	3.17 (6.50)	0.06 (0.16)	83	6.82 (11.57)	0.43 (0.78)
Fathead minnow	Pimephales promelas	fhmw	60	1.20 (1.61)	0.02 (0.03)	28	0.29 (0.54)	0.01 (0.03)
Bullhead minnow	Pimephales vigilax	bhmw	47	0.38 (0.71)	0.16 (0.30)	78	0.11 (0.35)	0.62 (0.86)
Blacknose dace	Rhinichthys atratulus	bndc	7	-	0.00 (0.01)	6	-	0.00 (0.01)
Creek chub	Semotilus atromaculatus	ckcb	7	-	0.00 (0.01)	22	0.26 (0.82)	0.00 (0.01)

Table II. (Continued)

Family and species	Scientific name	Abbreviation	Iowa River ($n=15$)			Cedar River ($n=18$)		
			Per cent	Electrofishing	Trawling	Per cent	Electrofishing	Trawling
Catostomidae								
River carpsucker	Carpiodes carpio	rvcs	80	14.41 (13.80)	0.00 (0.01)	100	24.69 (25.04)	0.01 (0.02)
Quillback carpsucker	Carpiodes cyprinus	qbck	33	1.37 (3.16)	0.00 (0.01)	78	5.99 (10.39)	0.00 (0.01)
Highfin carpsucker	Carpiodes velifer	hfcs	40	2.04 (4.16)	-	83	11.23 (12.65)	-
White sucker	Catostomus commersoni	wtsk	27	2.65 (6.31)	0.02 (0.06)	50	8.53 (17.61)	0.25 (0.89)
Blue sucker ${ }^{\text {a }}$	Cycleptus elongatus	busk	7	0.04 (0.15)	-	28	0.16 (0.38)	0.00 (0.01)
Northern hog sucker	Hypentelium nigricans	nhsk	33	4.22 (10.58)	0.06 (0.17)	72	4.96 (7.82)	0.05 (0.06)
Smallmouth buffalo	Ictiobus bubalus	smbf	73	5.53 (5.47)	-	50	2.82 (3.45)	-
Bigmouth buffalo	Ictiobus cyprinellus	bmbf	60	2.80 (4.26)	-	61	2.22 (2.65)	0.00 (0.01)
Black buffalo ${ }^{\text {a }}$	Ictiobus niger	bkbf	60	4.77 (8.02)	0.00 (0.01)	28	0.88 (1.78)	-
Silver redhorse	Moxostoma anisurum	svrh	33	1.46 (3.15)	-	78	15.93 (15.92)	-
River redhorse ${ }^{\text {a }}$	Moxostoma carinatum	rvrh	20	0.70 (2.00)	-	44	0.95 (1.54)	-
Black redhorse ${ }^{\text {a }}$	Moxostoma duquesnei	bkrh	20	0.53 (1.38)	0.01 (0.01)	11	0.09 (0.26)	-
Golden redhorse	Moxostoma erythrurum	gdrh	60	25.90 (37.62)	0.06 (0.13)	89	42.77 (40.48)	0.22 (0.27)
Shorthead redhorse	Moxostoma macrolepidotum	shrh	93	20.08 (18.53)	0.04 (0.05)	100	31.94 (25.64)	0.02 (0.03)
Ictaluridae								
Black bullhead	Ameiurus melas	bkbh	13	0.38 (1.02)	0.02 (0.06)	0	-	-
Yellow bullhead	Ameiurus natalis	ywbh	7	0.69 (2.67)	-	0	-	-
Channel catfish	Ictalurus punctatus	cncf	93	7.22 (5.34)	3.53 (7.71)	83	4.11 (5.31)	1.84 (3.85)
Stonecat	Noturus flavus	stct	53	0.15 (0.40)	0.22 (0.70)	61	-	0.04 (0.05)
Tadpole madtom ${ }^{\text {a }}$	Noturus gyrinus	tpmt	0			17	-	0.00 (0.01)
Freckled madtom ${ }^{\text {a }}$	Noturus nocturnus	fkmt	27	0.04 (0.17)	0.03 (0.06)	6	-	0.01 (0.04)
Flathead catfish	Pylodictis olivaris	fhcf	67	7.31 (9.27)	0.01 (0.02)	39	2.48 (5.19)	0.00 (0.01)
Esocidae								
Northern pike	Esox lucius	ntpk	40	1.93 (3.29)	-	72	1.25 (1.47)	0.00 (0.01)
Fundulidae								
Blackstripe topminnow ${ }^{\text {a }}$	Fundulus notatus	bttm	0	-	-	6	0.08 (0.34)	-
Atherinopsidae								
Brook silverside	Labidesthes sicculus	bkss	0	-	-	6	0.04 (0.17)	-
Brook stickleback	Culaea inconstans	bksb	7	-	0.00 (0.01)	0	-	-
Moronidae								
White bass	Morone chrysops	wtbs	67	1.94 (2.39)	0.03 (0.06)	33	0.78 (1.62)	0.01 (0.02)
Striped bass \times white bass ${ }^{\text {c }}$	Morone saxatilis \times Morone chrysops	sbwb	7	0.21 (0.82)	-	0	-	-
Centrarchidae								
Rock bass	Ambloplites rupestris	rkbs	13	0.10 (0.27)	-	39	6.23 (15.68)	0.01 (0.02)
Green sunfish	Lepomis cyanellus	gnsf	53	2.34 (4.49)	-	67	2.04 (3.57)	0.00 (0.01)
Orangespotted sunfish	Lepomis humilis	ossf	33	0.35 (1.08)	0.00 (0.01)	11	-	0.00 (0.01)
Bluegill	Lepomis macrochirus	blgl	60	4.06 (5.87)	0.00 (0.01)	33	0.50 (1.19)	0.00 (0.01)
Bluegill \times green sunfish ${ }^{\text {c }}$	Lepomis macrochirus \times Lepomis cyanellus	bggs	27	0.28 (0.59)	-	11	0.08 (0.36)	0.00 (0.01)
Smallmouth bass	Micropterus dolomieu	smbs	80	4.25 (6.18)	0.01 (0.03)	100	14.10 (11.90)	0.06 (0.08)

Table II. (Continued)

Family and species	Scientific name	Abbreviation	Iowa River ($n=15$)			Cedar River $(n=18)$		
			Per cent	Electrofishing	Trawling	Per cent	Electrofishing	Trawling
Largemouth bass	Micropterus salmoides	lmbs	27	1.76 (3.55)	-	28	0.33 (0.86)	0.00 (0.01)
White crappie	Pomoxis annularis	wtcp	27	0.17 (0.46)	0.02 (0.06)	17	0.07 (0.19)	0.00 (0.01)
Black crappie	Pomoxis nigromaculatus	bkcp	47	0.40 (0.55)	0.01 (0.02)	33	0.46 (0.89)	0.00 (0.01)
Percidae								
Western sand darter ${ }^{\text {a }}$	Ammocrypta clara	wsdr	7	-	0.00 (0.01)	50	-	0.06 (0.10)
Mud darter ${ }^{\text {a }}$	Etheostoma asprigene	mddr	27	-	0.01 (0.02)	0	-	-
Rainbow darter	Etheostoma caeruleum	rbdr	0	-	-	6	-	0.01 (0.05)
Iowa darter ${ }^{\text {a }}$	Etheostoma exile	iodr	13	-	0.01 (0.02)	0	-	,
Fantail darter	Etheostoma flabellare	ftdr	13	-	0.12 (0.37)	22	0.16 (0.41)	0.01 (0.03)
Johnny darter	Etheostoma nigrum	jydr	73	0.05 (0.21)	0.16 (0.47)	61	0.07 (0.21)	0.25 (0.43)
Banded darter ${ }^{\text {a }}$	Etheostoma zonale	bddr	7	0.14 (0.54)	0.16 (0.63)	39	0.05 (0.19)	1.59 (5.48)
Yellow perch	Perca flavescens	ywph	0	-	-	17	0.44 (1.36)	0.00 (0.02)
Logperch ${ }^{\text {a }}$	Percina caprodes	lgph	7	-	0.00 (0.01)	67	0.27 (0.52)	0.37 (0.77)
Blackside darter ${ }^{\text {a }}$	Percina maculata	bkdr	47	0.34 (0.90)	0.48 (0.82)	28	0.40 (1.08)	0.06 (0.13)
Slenderhead darter ${ }^{\text {a }}$	Percina phoxocephala	shdr	73	0.06 (0.22)	0.50 (1.27)	94	0.09 (0.39)	0.77 (1.07)
Sauger	Sander canadensis	sger	7	0.08 (0.29)	-	6	0.12 (0.50)	-
Walleye	Sander vitreus	wlye	73	1.53 (1.78)	0.04 (0.07)	83	3.66 (4.66)	0.06 (0.08)
Sciaenidae								
Freshwater drum	Aplodinotus grunniens	fwdm	40	0.61 (1.09)	0.02 (0.06)	44	1.13 (1.82)	0.00 (0.01)

[^1]

Figure 2. Species richness and per cent composition of tolerance traits, life history strategies, and habitat use guilds describing fish assemblages sampled from reaches distributed longitudinally along the Cedar and Iowa Rivers, Iowa, during 2010 and 2011
canopy cover, agricultural land use, and riparian-bank condition. Higher catch rates (i.e. CPUE) of species such as golden redhorse, northern pike Esox lucius, rock bass Ambloplites rupestris, and common shiner Luxilus cornutus were related to low discharge environments with high canopy cover and high percentages of basin agriculture. Downstream reaches contained high CPUE of 'large-river' species (e.g. gizzard shad, white bass Morone chrysops, and flathead catfish Pylodictis olivaris). Downstream reaches had high mean annual discharge, high proportions of shoreline rip-rap, and lower percentages of basin agriculture.

Seven environmental variables significantly explained variation in taxonomic structure using trawling data (Figure 3, lower panel). Axis 1 primarily represented a gradient of discharge, wetland land use, and substrate composition. This gradient contrasted species associated with increased discharge, increased percentage of wetland land use in local catchments, and finer substrates (e.g. freckled madtom Noturus nocturnus, channel catfish, and bluegill Lepomis macrochirus) from species associated with lower discharge and coarser substrates (e.g. hornyhead chub Nocomis biguttatus, slenderhead darter Percina phoxocephala, and northern hogsucker Hypentelium nigricans). Axis 2 represented a gradient of land use, which

Table III. Species distributions truncated by dams in the Iowa and Cedar Rivers, Iowa

Species common name	Iowa River	Cedar River
Shovelnose sturgeon ${ }^{\text {a }}$	X	
Longnose gar ${ }^{\text {a }}$	X	X
Shortnose gar	X	X
Bowfin ${ }^{\text {a }}$	X	
Goldeye ${ }^{\text {a }}$		X
Mooneye	X	X
Mississippi silvery minnow ${ }^{\text {a }}$		X
Shoal chub ${ }^{\text {a }}$	X	
Silver chub		X
Emerald shiner	X	X
River shiner	X	
Mimic shiner	X	
Channel shiner	X	
Blue sucker ${ }^{\text {a }}$	X	
Western sand darter ${ }^{\text {a }}$	X	
Sauger	X	X

Fish species were sampled from these rivers during 2010 and 2011. Truncated species distributions are defined as species only occurring downstream of the furthest downstream dam in each river. Species with truncated distributions are denoted with an X in each river system.
${ }^{\text {a }}$ Species of greatest conservation need in Iowa.
separated species associated with reaches characterized by higher percentages of basin urbanization (e.g. river shiner and bullhead minnow Pimephales vigilax) from species associated with reaches containing higher percentages of basin agriculture (e.g. Johnny darter Etheostoma nigrum and bigmouth shiner). Additionally, a pattern of increased abundance of silver chub, shoal chub, and shovelnose sturgeon in longer mainstem river fragments was identified using a threedimensional perspective of ordination space (axes not displayed in Figure 3).

Functional trait abundance models

Tolerance guild abundance was best explained by environmental variables in the electrofishing CCA (72.2% of the total variance) compared with the trawling CCA (48.4\%). Seven environmental variables were retained in the electrofishing CCA model, and three environmental variables were retained with the trawling CCA model (Figure 4, upper panels). Electrofishing CPUE of tolerant species was positively related to discharge and conductivity. The catch rate of intolerant species was positively related to coarse substrates and the percentage of basin urban land use. Electrofishing CPUE of moderately tolerant species was positively associated with the distance to upstream dams and the percentage of instream woody cover. In the trawling CCA, catch rates of tolerant species were positively related to the percentage of basin agriculture along Axis 1 . Axis 2 primarily represented a gradient of substrate composition. Along Axis 2, CPUE of intolerant species related positively to the percentage of coarse

Figure 3. Canonical correspondence analyses (CCA) describing patterns of fish assemblage structure using species relative abundance (catch per unit effort) from electrofishing and trawling samples taken from 33 reaches in the Cedar and Iowa Rivers, Iowa, during 2010 and 2011. Total variance explained by axes in parentheses next to corresponding ordination axes. Habitat abbreviations are provided in Table I, and fish species abbreviations are available in Table II
substrates, whereas catch rates of moderately tolerant species were related positively to fine substrates and, to a lesser extent, flow heterogeneity (i.e. CV of velocity).

Using life history strategy data, forward selection retained six environmental variables in the electrofishing CCA (62.9\% of total variation) and five in the trawling CCA (57.5\%; Figure 4, middle panels). In the electrofishing CCA, Axis 1 represented a gradient of stream size, discharge, and bank alteration. Along Axis 1, catch rates of equilibrium and periodic strategists were positively related to mean annual discharge, bankfull width, and the percentage of shoreline rip-rap, whereas the CPUE of opportunistic-equilibrium strategists was negatively related to discharge and shoreline rip-rap. Additionally, catch rates of periodic and opportunistic-equilibrium
strategists were positively related to mainstem fragment length. Also, electrofishing CPUE of periodic-equilibrium strategists was positively related to the percentage of basin urban land use and the percentage of woody cover. Similar to the electrofishing CCA, a discharge gradient was identified in the CCA using trawling data that had similar associations with relative abundances of periodic, equilibrium, opportunistic, and opportunistic-equilibrium strategists. The discharge gradient identified with the trawling data was slightly different, as substrate composition varied along the same gradient. Along Axis 1, CPUE of opportunistic, opportunistic-equilibrium, and periodic-equilibrium strategist was negatively related to discharge and positively related to coarse substrates, whereas catch rates of equilibrium and periodic strategists

Figure 4. Canonical correspondence analyses (CCAs) describing patterns of fish assemblage structure using tolerance trait, life history strategy, and habitat use guild relative abundance (catch per unit effort) from electrofishing and trawling samples taken from 33 reaches in the Cedar and Iowa Rivers, Iowa, during 2010 and 2011. Total variance explained by axes in parentheses next to corresponding ordination axes. Habitat abbreviations are provided in Table I
were positively related to discharge and fine substrates. The trawling CCA also described CPUE of opportunistic-periodic strategists as being positively associated with distance to downstream dam and mainstem fragment length. Catch rates of periodic strategists were negatively associated with the distance to impoundments and mainstem fragment length.

Habitat use guild variation was best explained by environmental variables in the trawling CCA (61\% of total variation) compared with the electrofishing CCA (47.7\%; Figure 4, lower panel). Three environmental variables explained variation in CPUE of habitat guilds in the CCA using electrofishing data. Positive associations were identified between the percentage of shoreline rip-rap and CPUE of macrohabitat generalists,
the percentage of canopy cover and CPUE of fluvial dependents, and distance to downstream dams and CPUE of fluvial specialist fishes. In the CCA using trawling data, four environmental variables explained variation in CPUE of habitat guilds. Axis 1 represented a gradient of discharge, basin agriculture, and canopy cover. Along Axis 1, the CPUE of macrohabitat generalists related positively to discharge; whereas CPUE of fluvial dependents and fluvial specialists was negatively related to discharge and positively related to canopy cover and basin agriculture. Additionally, Axis 2 represented a gradient of current velocity, which exhibited a positive association with the CPUE of fluvial specialists and a negative association with CPUE of fluvial dependents.

Functional trait composition models

Five environmental variables were retained to explain 73.6% of total variation in the tolerance guild composition model (Figure 5; top panel). Along Axis 1, per cent composition of intolerant species was positively related to canopy cover and negatively related to mainstem fragment size. Conversely, per cent composition of moderately intolerant species was positively related to mainstem fragment length and negatively related to canopy cover. Along Axis 2, per cent composition of tolerant species was positively related to basin agriculture and negatively related to basin urban land use and distance to downstream impoundments.

Patterns in life history strategy composition were explained by six environmental variables (72.5% of total variation; Figure 5, middle panel). Per cent composition of opportunistic, opportunistic-equilibrium, and periodic-equilibrium strategists was positively related to coarse substrate and negatively related to discharge. On the other hand, per cent composition of periodic and equilibrium strategists was positively related to discharge. Also, per cent composition of opportunistic-periodic strategists was positively associated with mainstem river fragment length. Along Axis 2, river reaches with high discharge, high proportions of upstream urban land use, and low proportions of woody cover were associated with a high

Figure 5. Canonical correspondence analyses (CCAs) describing patterns of fish assemblage structure described through per cent composition of tolerance trait, life history strategy, and habitat use guild from species composition described using both electrofishing and trawling samples taken from 33 reaches in the Cedar and Iowa Rivers, Iowa, during 2010 and 2011. Total variance explained by axes in parentheses next to corresponding ordination axes. Habitat abbreviations are provided in Table I
per cent composition of equilibrium strategist and a low composition of opportunist-equilibrium strategists.

The habitat use guild composition model retained three environmental variables using forward selection (57.9% of total variation; Figure 5, lower panel). Axis 1 represented a gradient of depth and rip-rap. Along Axis 1, per cent composition of macrohabitat generalists was positively related to mean depth and the percentage of shoreline rip-rap. Conversely, per cent composition of fluvial specialists was negatively related to mean depth and the percentage of shoreline rip-rap. Along Axis 2, per cent composition of fluvialdependent species was positively related to mainstem river fragment length.

Partitioning model variance

Results from the pCCAs indicated that reach-scale environmental variables were generally more important in explaining fish assemblage structure than landscape-scale and damrelated environmental variables (Figure 6). Reach-scale environmental variables accounted for $25.0-81.1 \%$ of constrained fish assemblage variation in almost all of the CCA models. Among reach-scale variables, mean annual discharge was commonly selected in the CCAs and explained the most assemblage variation compared with other reach-scale characteristics.

Among other reach-scale variables, the percentage of shoreline rip-rap also explained high proportions of fish assemblage variation when selected. The variation not explained by reach-scale characteristics was largely explained by dam and (or) land use variables. Altogether, land use variables explained $5.8-47.2 \%$ of the assemblage variation in nine CCA models and were largely represented by either the percentage of basin agriculture and (or) urban land use. Variables associated with dams were identified in nine CCA models and explained $6.2-25.1 \%$ of the variation in fish assemblages (mainly represented by fragment length and distance to impoundment). Land use variables explained more of the assemblage variation than variables associated with dams in six CCA models, particularly in the tolerance guild CCAs and the CCAs using trawling data. In contrast, variables associated with dams accounted for as much or more of the variation in life history strategies as landscapescale variables.

DISCUSSION

Fish assemblage structure in the Cedar and Iowa Rivers was influenced by a variety of environmental characteristics operating at multiple spatial scales. From a geographic perspective,

Figure 6. Percentages of explained variance in fish assemblage structure described in 11 canonical correspondence analysis models. Total constrained variance in fish assemblages was partitioned by reach-scale, dam-related, and landscape-scale environmental variable sets. Fish assemblages were described by taxonomic abundance, trait abundance, and trait composition using electrofishing and trawling datasets. Fish trait classifications included tolerance guilds, life history strategies, and habitat use guilds. Fish assemblage structure was described using data acquired from electrofishing and trawling samples taken from 33 reaches in the Cedar and Iowa Rivers, Iowa, during 2010 and 2011
spatial patterns of species occurrence and trait composition were longitudinal in structure and were largely explained by mean annual discharge and other reach-scale habitat variables. Although longitudinal variation in fish assemblage structure was associated with reach-scale habitat, other ecological patterns of functional trait abundance and composition were attributed to environmental variation associated with dams and watershed land use. These results provide further evidence suggesting that lotic fish assemblages are structured by cumulative environmental influences of natural and anthropogenic origin, exhibited across multiple spatial scales (Weigel et al., 2006; Hoeinghaus et al., 2007; Rowe et al., 2009; Wang et al., 2011; Sindt et al., 2012).

Agricultural land use, particularly row-crop agriculture, dominates much of the landscape in the state of Iowa. Because of this land use saturation, percentages of basin agriculture exhibited little variation among sampling reaches compared with reach-scale characteristics such as discharge. Hence, fish assemblage structure was primarily influenced by reach-scale characteristics as opposed to landscape measures in the Cedar and Iowa rivers. Multi-scale analyses in other systems have typically described the overarching importance of landscape characteristics on habitats and species distributions (Marsh-Matthews and Matthews, 2000; Hoeinghaus et al., 2007). Our results differed in that taxonomic structure was largely influenced by local environmental characteristics. Rather, our results are concordant with those of Rowe et al. (2009) and Fischer and Paukert (2008) where the explanatory power of local-scale environmental characteristics exceeded the large-scale influences on fish assemblage structure in relatively homogenous (i.e. agriculturally dominated) landscapes.

Despite the relative importance of reach-scale habitat, our models indicated that land use variables were still important determinants of fish assemblages in the Iowa and Cedar Rivers. In particular, land use characteristics explained high proportions of tolerant guild variation. For instance, the trawling abundance and per cent composition of tolerance fish species exhibited positive relationships with agricultural land use. Similar studies have found that lotic systems with upstream agricultural land use exceeding 50% of the watershed have been associated with lower scores of fish biological integrity (Wang et al., 1997) and higher proportions of tolerant species (Rowe et al., 2009). Surprisingly, CCA models contained very few land use factors measured in local catchments, despite high variation in the variables. Additionally, we did not anticipate the positive association between basin urban land use and intolerant species in the electrofishing model and functional trait composition model. Urban land use exceeding $10-15 \%$ of the watershed is often considered a threshold where declines in biological integrity tend to occur (Wang et al., 1997). Most of our reaches did not exceed 9% urban land use. Nonetheless, the influence
of landscape factors was minor compared with the influence of reach-scale habitat on the organization of fish assemblages in our study systems.

Among reach-scale characteristics, longitudinal changes in discharge provided the strongest explanation for spatial changes in the local fish assemblage structure in the Iowa and Cedar Rivers. The relative importance of mean annual discharge and its inclusion in the majority of CCA models likely indicates that fish assemblage structure was highly influenced by the flow regime. In general, it is assumed that discharge characterizes broad habitat types that correspond to patterns in species composition along the length of a river (i.e. zonation; McGarvey and Ward, 2008; McGarvey, 2011). Unlike the longitudinal patterns of species richness often exhibited in lotic systems in the western USA (e.g. Rahel and Hubert, 1991), longitudinal patterns in lowland rivers of the Midwest reflect gradual downstream changes in fish species distributions (McGarvey, 2011; Sindt et al., 2012; Pierce et al., 2013) and assemblage function (Vannote et al., 1980; Junk et al., 1989). Longitudinal shifts in fish assemblages are typically linked to changes in river position or river size, yet assemblage structure should ultimately be controlled by streamflow. Discharge provides both habitat volume and complexity (Poff et al., 1997) and can be altered by various anthropogenic activities (Ward and Stanford, 1995). Recent work by McGarvey (2011) demonstrated how gradual downstream shifts (i.e. every 50 rkm) in discharge are inherently linked to longitudinal zonation patterns of fish assemblages. Zonation patterns tend to be the result of a broad habitat type characterized among adjacent river reaches (Matthews, 1998). Our findings agree with those of McGarvey (2011) and suggest that spatial changes in species composition (i.e. replacements) in the Cedar and Iowa Rivers correspond to downstream transitions in discharge and broad habitat types (e.g. upstream reaches similarly characterized by lower discharge, increased canopy, and coarse substrates).

Our observations on flow variability, described by annual discharge CV values, provide additional insight on the spatial association between mean annual discharge and fish assemblages in the Cedar and Iowa Rivers. Specifically, spatial patterns of inter-annual flow variability may provide a habitat template that links fish life history strategies and mean annual discharge in the Cedar and Iowa Rivers. Although the annual discharge CV values were not included in the ordination analyses, annual discharge CV exhibited a strong negative correlation with mean annual discharge, thereby suggesting a spatial link between fish assemblage temporal flow variation. Specifically, increased discharge and low variability in downstream habitats were associated with increased abundance and per cent composition of equilibrium strategists, whereas low discharge and high variability in upstream river habitats corresponded to increased abundance and per cent composition of opportunistic-equilibrium and opportunistic strategists.

Life history correspondence to spatial changes in flow variability suggests that there is an environmental stability gradient along the Cedar and Iowa Rivers. Links between flow variation and life history patterns have often been described by this habitat template (Poff, 1997), especially among upstream and downstream habitats (Schlosser, 1990; Roberts and Hitt, 2010; Pease et al., 2012). Small-bodied opportunistic species are capable of colonizing and reproducing in variable lotic environments (e.g. riffles and flashy streams) characterized by low streamflow (Schlosser, 1990; Winemiller and Rose, 1992; Hitt and Roberts, 2012). The short life span and fast maturation of opportunistic species allow for a fast recovery and re-colonization in more variable lotic environments that are more prone to flashy disturbance (Schlosser, 1990). Small-bodied opportunists also increase their persistence by using variable environments to avoid predation from largerbodied species common in stable environments (Hoeinghaus et al., 2007; Pease et al., 2012). In downstream river habitats, equilibrium species tend to persist in environments with higher discharge, which typically reflect higher levels of environmental stability (i.e. less flashy and more predictable flow regimes). High discharge habitats, in conjunction with adequate amounts of instream structure, provide an environment capable of supporting the reproductive ecology of large-bodied equilibrium strategists (Winemiller and Rose, 1992; Mimms and Olden, 2012; Pease et al., 2012).

Apart from the influence of discharge, rip-rap characteristics were also consistently identified as an important reach-scale habitat component in the Cedar and Iowa Rivers. Rip-rapped shorelines (e.g. rocks and tires) have been associated with poor biological integrity, alteration of channel morphology, and loss of ecosystem function (Lyons, 2005). However, shoreline rip-rap has been shown to increase habitat complexity and fish diversity in large rivers (White et al., 2009; Eitzmann and Paukert, 2010) and have characterized unique patterns in species composition compared with other habitats along channel borders (Madejczyk et al., 1998). Recently, White et al. (2009) found that engineered habitats in the Kansas River composed of rip-rapped shoreline had a positive influence on the diversity and abundance of macrohabitatgeneralist and fluvial-dependent fish species. This observation is different from fish assemblage patterns observed in the Cedar and Iowa Rivers, where rip-rap was positively related to the abundance and richness of macrohabitat generalists and negatively related to the abundance and richness of fluvial specialists. Compared with habitat described by Eitzmann and Paukert (2010), the Iowa and Cedar Rivers seem to exhibit higher habitat heterogeneity than the Kansas River. It may be likely that rip-rap does not provide the same benefits in the Cedar and Iowa Rivers as observed in the Kansas River. The lack of fluvial specialists in reaches with high proportions of rip-rap further supports the notion that this form of artificial habitat is not typically used by fluvial specialists in our study
systems. Rip-rap revetments were apparent in all study reaches, which implies that our analysis probably showed a measurable association with fish assemblages. However, the effects of rip-rap were probably intensified near sites of multiple disturbances (e.g. reaches below dams or in urbanized flood plains). Our results and the results of Lyons (2005) indicate that further investigation is needed to understand the influence of rip-rap on fish assemblages in lotic systems throughout the upper Mississippi River drainage.

Previous work by Rowe et al. (2009) and Neebling and Quist (2010) demonstrated how landscape disturbance and habitat were associated with fish assemblages in lotic systems in Iowa but did not evaluate dams. Pierce et al. (2013) documented a strong pattern of fish assemblage change associated with presence of dams along three eastern Iowa rivers, but the pattern was confounded with longitudinal position. They also found similar truncated patterns of species distributions with many species that were limited to the furthest downstream reaches. Because numerous environmental factors (e.g. discharge) influenced fish assemblages, dams were expected to account for only a fraction of the variance in fish assemblage structure. Studies similar to ours have observed small to moderate (6-19\%) percentages of fish assemblage variation explained by dams (Weigel et al., 2006; Wang et al., 2011). For instance, comparing with local-scale and basin-scale environmental factors in Wisconsin's nonwadeable rivers, Weigel et al. (2006) found that only small amounts of fish assemblage variation could be explained by dams when using metrics from the index of biotic integrity (IBI). Similarly, Wang et al. (2011) studied unimpounded reaches of streams and rivers in Wisconsin and Michigan and found that dams also accounted for small amounts of variation in IBI metrics and other fish traits. Compared with these studies, our study found that variables associated with dams accounted for a larger percentage of fish assemblage variation in both functional trait and taxonomic descriptors. Again, this was probably due to the homogeneous landscape in Iowa where local habitat and dams may play a larger role in structuring fish assemblages. Nonetheless, our study was most similar to that of Weigel et al. (2006) because both studies assessed only nonwadeable rivers and used the same variables associated with dams. Much like the work of Weigel et al. (2006), Wang et al. (2011), and Pierce et al. (2013), our research suggests that dams play a considerable role in influencing the taxonomic and functional organization of fish assemblages in nonwadeable rivers.

Two prominent relationships between dams and fish assemblages were identified among other environmental relationships. Mainstem fragment length played a considerable role in influencing the relative abundance of opportunistperiodic strategists (e.g. silver chub and shoal chub). Perkin and Gido (2011) described similar findings when they determined a minimum size threshold of river fragments that was
needed for the persistence of pelagic-spawning cyprinids (i.e. silver chub and shoal chub) in rivers of the Great Plains. Similarly, Pool et al. (2010) found that small fragments between dams created unfavourable hydrologic conditions for species with opportunistic-periodic strategies. When in close proximity to impounded habitats or in impounded small river fragments, we observed high abundance of periodic strategists. Falke and Gido (2006) described a similar pattern in Kansas rivers where highly abundant facultative reservoir species exhibiting periodic strategies (e.g. gizzard shad, walleye, and buffalo species Ictiobus spp.) were located in close proximity to impoundments. Additionally, our observations of fish assemblages in close proximity to impoundments were characterized by high percentages of tolerant species and low percentages of moderately tolerant species. This finding may indicate that spatial effects from impoundments partially dictate patterns of biological integrity (Santucci et al., 2005; Wang et al., 2011).

Beyond the influence of mainstem fragment length, it is evident that dams have limited the longitudinal distribution of several fish species. Similar to the findings of Pierce et al. (2013), the distribution of fish species in the Iowa and Cedar Rivers exhibited longitudinal variation, yet many 'downstream distributed' fish species appeared to be limited by dams. Of the 15 species with truncated distributions in our study, nine species also had truncated distributions in three other Iowa rivers (Pierce et al., 2013). Historical records of fish distributions confirmed that species such as mooneye, shortnose gar, and emerald shiner were widely distributed in both the Iowa and Cedar Rivers (Loan-Wilsey et al., 2005; Parks et al., 2014), implying that the farthest downstream dams limit the longitudinal dispersal of fishes. Similar patterns of truncated species distributions were observed by Santucci et al. (2005) where dams created barriers to fish dispersal in an Illinois river system. In our study, most of the species that were limited by dams typically occur in 'great rivers' (e.g. Mississippi River) and exhibit complex migratory behaviours (Galat and Zweimuller, 2001). Many of these fish species are known to make considerable longitudinal movements along the main channel as well as lateral migrations to floodplain environments to access critical habitats to complete important life history events (Junk et al., 1989; Galat and Zweimuller, 2001). The construction of dams has probably restricted the movements of many 'downstream distributed' river species and resulted in the isolation and extirpation of several large-river fishes upstream of dams in the Iowa and Cedar Rivers. For instance, species such as longnose gar and mooneye have not been observed in habitats upstream of the Cedar Rapids Milldam since 1891 (Loan-Wilsey et al., 2005).

Our study provides valuable insights about the roles of land use, dams, and reach-scale environmental characteristics on fish assemblages in nonwadeable rivers in Iowa. This
is the most comprehensive evaluation of how fish assemblages are related to dams in Iowa's nonwadeable rivers. The addition of trawling data has greatly improved our understanding of how benthic fish assemblages respond to riverine environments, and the use of several fish assemblage descriptors such as taxonomy, life history strategies, tolerance traits, and habitat use guilds has enabled us to connect ecological and distributional patterns with environmental variation. These diagnostic considerations are especially important when trying to determine the appropriate metrics used to assess disturbance or to evaluate the success of restoration and mitigation efforts in river ecosystems.

ACKNOWLEDGEMENTS

We thank Christopher Smith, Nick Johnson, Joshua Bruegge, and David Frazier for field assistance. We also appreciate the advice and input from Jesse Fischer, Michael Colvin, Maria Dzul, Anthony Sindt, Bryan Bakevich, and Joshua McCormick on various aspects of the study. We thank Gregory Gelwicks, Greg Simmons, John Olson, Thomas Wilton, Karen Kinkead, and others at Iowa Department of Natural Resources for their guidance and support. Sarah Nusser, Tom Wilton, and two anonymous reviewers provided helpful comments on an earlier version of the manuscript. Funding was provided by the Iowa Department of Natural Resources. The use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government. This study was performed under the auspices of the Institutional Animal Care and Use Committee at Iowa State University (protocol \#1-10-6850-I).

REFERENCES

Allan JD. 2004. Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology and Systematics 35: 257-284. Becker GC. 1983. Fishes of Wisconsin. University of Wisconsin Press: Madison. ter Braak CJF, Smilauer P. 2002. CANOCO Reference Manual and CanoDraw for Windows User's Guide: Software for Canonical Community Ordination, version 4.5. Microcomputer Power: Ithaca, NY.
Burkhead NM. 2012. Extinction rates in North American freshwater fishes, 1900-2010. BioScience 62: 798-808.
Carlander KD. 1969. Handbook of Freshwater Fishery Biology, volume 1. Iowa State University Press: Ames.
Carlander KD. 1977. Handbook of Freshwater Fishery Biology, volume 2. Iowa State University Press: Ames.
Carlander KD. 1997. Handbook of Freshwater Fishery Biology, volume 3. Iowa State University Press: Ames.
Chick JH, Pegg MA, Koel TM. 2006. Spatial patterns of fish communities in the Mississippi River system: assessing fragmentation by low-head dams. River Research and Applications 22: 413-4427.
Dynesius M, Nilsson C. 1994. Fragmentation and flow regulation of river systems in the northern third of the world. Science 266: 753-762.
Eitzmann JL, Paukert CP. 2010. Longitudinal differences in habitat complexity and fish assemblage structure of a Great Plains river. American Midland Naturalist 163: 14-32.

ESRI (Environmental Systems Research Institute). 2006. ESRI Software Support Guide. ESRI: Redlands, California.
Falke JA, Gido KB. 2006. Spatial effects of reservoirs on fish assemblages in Great Plains streams in Kansas, USA. River Research and Applications 22: 55-68.
Fischer JR, Paukert CP. 2008. Habitat relationships with fish assemblages in minimally disturbed Great Plains regions. Ecology of Freshwater Fish 17: 597-609.
Fitzpatrick FA, Waite IR, D'Arconte PJ, Meador MR, Maupin MA, Gurtz ME. 1998. Revised methods for characterizing stream habitat in the National Water-Quality Assessment Program. USGS Water-Resources Investigations Report 98-4052. US Geological Survey: Reston, VA.
Flotemersch JE, Stribling JB, Paul MJ. 2006. Concepts and approaches for the bioassessment of non-wadeable streams and rivers. EPA/600/R/06/ 127. US Environmental Protection Agency: Washington, DC.

Freeman MC, Pringle CM, Greathouse EA, Freeman BJ. 2003. Ecosystemlevel consequences of migratory faunal depletion caused by dams. American Fisheries Society Symposium 35: 255-266.
Fry J, Xian G, Jin S, Dewitz J, Homer C, Yang L, Barnes C, Herold N, Wickham J. 2011. Completion of the 2006 national land cover database for the conterminous United States. Photogrammetric Engineering and Remote Sensing 77: 858-864.
Galat DL, Zweimuller I. 2001. Conserving large-river fishes: is the highway analogy an appropriate paradigm? Journal of the North American Benthological Society 20: 266-279.
Gelwicks GT. 2007. Evaluation of the importance of specific in-stream habitats to fish populations and the potential for protecting or enhancing Iowa's interior river resources (F-160-R). Iowa Department of Natural Resources, Federal Aid to Fish Restoration, Annual Performance Report, Des Moines.
Guenther CB, Spacie A. 2006. Changes in fish assemblage structure upstream and downstream of impoundments in upper Wabash River basin, Indiana. Transactions of the American Fisheries Society 135: 570-583.
Heitke JD, Pierce CL, Gelwicks GT, Simmons GA, Siegwarth GL. 2006. Habitat, land use, and fish assemblage relationships in Iowa streams: preliminary assessment in an agricultural landscape. American Fisheries Society Symposium 48: 287-303.
Herzog DP, Barko VA, Scheibe JS, Hrabik RA, Ostendorf DE. 2005. Efficacy of a benthic trawl for sampling small-bodied fishes in large river systems. North America Journal of Fisheries Management 25: 594-603.
Hitt NP, Roberts JH. 2012. Hierarchical spatial structure of stream fish colonization and extinction. Oikos 121: 127-137.
Hoeinghaus DJ, Winemiller KO, Birnbaum JS. 2007. Local and regional determinants of stream fish assemblage structure: inferences based on taxonomic vs. functional groups. Journal of Biogeography 34: 324-338.
Hughes RM, Rinne JM, Calamusso B. 2005. Historical changes in large river fish assemblages of the Americas. American Fisheries Society Symposium 45: 603-612.
IDNR (Iowa Department of Natural Resources). 2004. Inventory of dams in the state of Iowa. (ftp://ftp.igsb.uiowa.edu/gis_library/ia_state/infrastructure/ dams.html) accessed February 2010.
Jelks HL, Walsh SJ, Burkhead NM, Conteras-Balderas S, Diaz-Pardo E, Hendrickson DA, Lyons J, Mandrak NE, McCormick F, Nelson JS, Platania SP, Porter BA, Renaud CB, Schmitter-Soto JJ, Taylor EB, Warren ML, Jr. 2008. Conservation status of imperiled North American freshwater and diadromous fishes. Fisheries 33: 372-407.
Johnson BL, Richardson WB, Naimo TJ. 1995. Past, present, and future concepts in large river ecology. BioScience 45: 134-141.
Junk WJ, Bayley PB, Sparks RE. 1989. The flood pulse concept in riverfloodplain systems. Canadian Journal of Fisheries and Aquatic Sciences Special Publication 106: 110-127.
Karr JR, Toth LA, Dudley DR. 1985. Fish communities of Midwestern rivers: a history of degradation. BioScience 35: 90-95.
Kinsolving AD, Bain MB. 1993. Fish assemblage recovery along a riverine disturbance gradient. Ecological Applications 3: 531-544.
Legendre P, Legendre L. 1998. Numerical Ecology. Elsevier: New York.

Loan-Wilsey AK, Pierce CL, Kane KL, Brown PD, McNeely RL. 2005. The Iowa Aquatic Gap Analysis Project Final Report. Iowa Cooperative Fish and Wildlife Research Unit, Iowa State University: Ames.
Lyons J. 2005. Longitudinal and lateral patterns of fish species composition and biotic integrity in the lower Wolf River, Wisconsin, a relatively undegraded floodplain river. Journal of Freshwater Ecology 20: 47-58.
Lyons J, Piette RR, Niermeyer KW. 2001. Development, validation, and application of a fish-based index of biotic integrity for Wisconsin's large warmwater rivers. Transactions of the American Fisheries Society 130: 1077-1094.
Madejczyk JC, Mundahl ND, Lehtinen RM. 1998. Fish assemblages of natural and artificial habitats within the channel border of the upper Mississippi river. American Midland Naturalist 139: 296-310.
Marsh-Matthews E, Matthews WJ. 2000. Geographic, terrestrial and aquatic factors: which most influence the structure of stream fish assemblages in the midwestern United States? Ecology of Freshwater Fish 9: 9-21.
Matthews WJ. 1998. Patterns in Freshwater Fish Ecology. Chapman and Hall, New York.
McGarvey DJ. 2011. Quantifying ichthyofaunal zonation and species richness along a $2800-\mathrm{km}$ reach of the Rio Chama and Rio Grande (USA). Ecology of Freshwater Fish 20: 231-242.
McGarvey DJ, Ward GM. 2008. Scale dependence in the species-discharge relationship for fishes of the southeastern USA. Freshwater Biology 53: 2206-2219.
Mimms MC, Olden JD. 2012. Life history theory predicts fish assemblage response to hydrologic regimes. Ecology 93: 35-45.
Miranda LE, Habrat MD, Miyazono S. 2008. Longitudinal gradients along a reservoir cascade. Transactions of the American Fisheries Society 137: 1851-1865.
Neebling TE, Quist MC. 2010. Relationships between fish assemblages and habitat characteristics in Iowa's nonwadeable rivers. Fisheries Management and Ecology 17: 369-385.
Olden JD, Kennard MJ. 2010. Intercontinental comparison of fish life history strategies along a gradient of hydrologic variability. American Fisheries Society Symposium 73: 281-299.
Orth DJ, Maughan OE. 1982. Evaluation of the incremental methodology for recommending instream flows for fish. Transactions of the American Fisheries Society 11: 413-445.
Parks TP, Quist MC, Pierce CL. 2014. Historic changes in fish assemblage structure in midwestern nonwadeable rivers. American Midland Naturalist 171: 27-53.
Pease AA, González-Díaz AA, Rodiles-Hernández R, Winemiller KO. 2012. Functional diversity and trait-environment relationships of stream fish assemblages in a large tropical watershed. Freshwater Biology 57: 1060-1075.
Perkin JS, Gido KB. 2011. Stream fragmentation thresholds for a reproductive guild of Great Plains fishes. Fisheries 36: 371-383.
Peterson JT, Rabeni CF. 2001. The relation of fish assemblages to channel units in an Ozark stream. Transactions of the American Fisheries Society 130(5): 911-926.
Pierce CL, Ahrens NL, Loan-Wilsey AK, Simmons GA, Gelwicks GT. 2013. Fish assemblage relationships with physical characteristics and presence of dams in three eastern Iowa rivers. River Research and Applications. DOI: 10.1002/rra. 2654
Poff NL. 1997. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. Journal of the North American Benthological Society 16: 391-409.
Poff NL, Allan JD. 1995. Functional organization of stream fish assemblages in relation to hydrological variability. Ecology 76: 606-627.
Poff NL, Allen JD, Bain MB, Karr JR, Prestegaard KL, Richter DB, Sparks RE, Stromberg JC. 1997. The natural flow regime: a paradigm for river conservation and restoration. BioScience 47: 769-783.
Pool TK, Olden JD, Whittier JB, Paukert CP. 2010. Environmental drivers of fish functional diversity and composition in the lower Colorado River basin. Canadian Journal of Fisheries and Aquatic Sciences 67: 1791-1807.

Pyron M, Lauer TE. 2004. Hydrological variation and fish assemblage structure in the middle Wabash River. Hydrobiologia 525: 203-213.
Quist MC, Hubert WA, Rahel FJ. 2005. Fish assemblage structure following impoundment of a Great Plains river. Western North American Naturalist 65: 53-63.
R Development Core Team. 2011. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria.
Rahel FJ, Hubert WA. 1991. Fish assemblages and habitat gradients in a Rocky Mountain-Great Plains stream: biotic zonation and additive patterns of community change. Transactions of the American Fisheries Society 120: 319-332.
Richter BD, Baumgartner JV, Powell J, Braun DP. 1996. A method for assessing hydrological alteration within ecosystems. Conservation Biology 10(4): 1163-1174.
Rinne JN, Hughes RM, Calamusso B (eds). 2005. Historical changes in large river fish assemblages of the Americas. American Fisheries Society Symposium, vol. 45, Bethesda, Maryland.
Roberts JH, Hitt NP. 2010. Longitudinal structure in temperate stream fish communities: evaluating conceptual models with temporal data. American Fisheries Society Symposium 73: 281-299.
Rowe DC, Pierce CL, Wilton TF. 2009. Fish assemblage relationships with physical habitat in wadeable Iowa streams. North American Journal of Fisheries Management 29: 1314-1332.
Santucci VJ, Jr., Gephard SR, Pescitelli SM. 2005. Effects of multiple lowhead dams on fish, macroinvertebrates, habitat, and water quality in the Fox River, Illinois. North American Journal of Fisheries Management 25: 975-992.
Schlosser IJ. 1990. Environmental variation, life history attributes, and community structure in stream fishes: implications for environmental management and assessment. Environmental Management 14: 621-628.

Sindt AR, Quist MC, Pierce CL. 2012. Habitat associations of fish species of greatest conservation need at multiple spatial-scales in wadeable Iowa streams. North American Journal of Fisheries Management 32: 1046-1061.
Sparks RE. 1995. Need for ecosystem management of large rivers and their floodplains. BioScience 45: 168-182.
USGS (United States Geological Survey). 2004. National Hydrography Dataset. Available at (http://nhd.usgs.gov/) accessed August 2011.
Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE. 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37: 130-137.
Wang L, Lyons J, Kanehl P, Gatti R. 1997. Influence of watershed land use on habitat quality and biotic integrity in Wisconsin streams. Fisheries 22(6): 6-12.
Wang L, Infante D, Lyons J, Stewart J, Cooper A. 2011. Effects of dams in river networks on fish assemblages in non-impoundment sections of rivers in Michigan and Wisconsin, USA. River Research and Applications 27: 473-487.
Ward JV, Stanford JA. 1995. The serial discontinuity concept: extending the model to floodplain rivers. Regulated Rivers: Research and Management 10: 159-168.
Weigel BM, Lyons J, Rasmussen PW, Wang L. 2006. Relative influence of environmental variables at multiple spatial-scales on fishes in Wisconsin's warmwater nonwadeable rivers. American Fisheries Society Symposium 48: 493-511.
White KR, Gerken J, Paukert CP, Makinster A. 2009. Fish community structure in natural and engineered habitats in the Kansas River. River Research and Applications 26: 797-805.
Wilton TF. 2004. Biological Assessment of Iowa's Wadeable Streams. Iowa Department of Natural Resources: Des Moines.
Winemiller KO, Rose KA. 1992. Patterns of life-history diversification in North American fishes: implications for population regulation. Canadian Journal of Fisheries and Aquatic Sciences 49: 2196-2221.

[^0]: *Correspondence to: T. P. Parks, Wisconsin Department of Natural Resources, 810 W. Maple Street, Spooner, Wisconsin 54801, USA.
 E-mail: Timothy.Parks@wisconsin.gov

[^1]: Catch per unit effort was calculated as the number of fish per hour for electrofishing and number of fish per 50 m of trawling.
 ${ }^{\mathrm{a}}$ Species of greatest conservation need in Iowa.
 ${ }^{\mathrm{b}}$ Non-native.
 ${ }^{\mathrm{c}}$ Non-native.
 ${ }^{\mathrm{c}}$ Hybrid.

