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ABSTRACT

Fish assemblages in rivers of the Midwestern United States are an important component of the region’s natural resources and biodiversity.
We characterized the physical environment and presence of dams in a series of reaches in three eastern Iowa rivers tributary to the
Mississippi River and related these characteristics to the fish assemblages present. Some physical characteristics were similar among
the 12 study reaches, whereas others differed substantially. We found a total of 68 species across the 12 study reaches; 56 in the Turkey
River, 51 in the Maquoketa River and 50 in the Wapsipinicon River. Seventeen species could be described as ‘downstream-distributed’; 15
being found only in the lowest reach of one or more rivers and the other two being found only in the lowest reaches or two or more
contiguous reaches including the lowest reach. Two species could be described as ‘upstream-distributed’, being found only in an
uppermost reach. Non-metric multidimensional scaling ordination illustrated similarities among reaches, and five physical variables
were significantly correlated with assemblage similarities. Catchment area and number of dams between reaches and the Mississippi
River were strongly correlated with assemblage similarities, but the directions of their effects were opposite. Catchment area and number
of dams were confounded. The collective evidence to date suggests that the pervasiveness of dams on rivers significantly alters fish
assemblages, making underlying patterns of species change and relationships with naturally varying and human-influenced physical
characteristics along a river’s course difficult to discern. Published 2013. This article is a U.S. Government work and is in the public
domain in the USA.
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INTRODUCTION

Fish assemblages in rivers of the Midwestern United States
are an important and highly visible component of the
region’s natural resources and biodiversity (Dauwalter
et al., 2010; Paukert and Galat, 2010). Fish assemblages play
important roles in river ecosystem function (Vanni, 2010)
and are a cornerstone of environmental assessment of river
health (Simon, 1999). Fish assemblages in agriculturally
dominated areas such as the Midwest reflect a combination
of natural and anthropogenic influences (Infante and Allan,
2010; NFHB, 2010), and understanding relationships among
and relative impacts of the many influences will be necessary
to successfully manage and enhance Midwestern rivers and
their fish faunas (Kwak and Freeman, 2010).
Sedimentation is one of the most deleterious conse-

quences of agricultural land use for streams and rivers in
the Midwestern United States and other agricultural areas
*Correspondence to: C. Pierce, 339 Science II, Iowa State University,
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(Waters, 1995; Allan, 2004). Sedimentation has many nega-
tive effects on rivers, including reduced light availability,
reduced primary productivity, burial of coarse substrates
and other types of coverand filling of pools. Filling of pools
with sediment has been shown to reduce maximum depths
and depth variation, changing the physical character of
rivers to the detriment of fish and other riverine biota (Wood
and Armitage, 1997; Walser and Bart, 1999; Shields et al.,
2007). Agricultural land use is pervasive in Iowa (Whitney,
1994; NRCS, 2009) and has resulted in highly degraded
stream habitats and biota (Wilton, 2004; Heitke et al.,
2006; Rowe et al., 2009b).
Adequate depth and depth variation associated with the

presence of deep pools are important habitat features in
rivers for conserving native species and supporting healthy
fish assemblages (Rabeni and Jacobson, 2006). Deep pools
in Midwestern rivers have been shown to support greater
abundance of certain species than shallower areas (Aadland,
1993), and telemetry studies in Iowa rivers have shown that
deep pools are preferred by both walleye (Paragamian,
1989) and channel catfish (Gelwicks, 2007) at certain times
the public domain in the USA.



Figure 1. Locations of 12 study reaches examined for relationships
of fish assemblages with physical, thalweg depth and pool charac-

teristics in three eastern Iowa rivers
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of the year. As an example of the growing recognition of the
importance of depth and flow at a much broader scale, the
concept of environmental flows is currently one of the most
urgent issues in river management worldwide (Postel and
Richter, 2003; Bruno and Siviglia, 2012).
Fragmentation by dams and the resulting blockage of

upstream–downstream movements can also have significant
impacts on river fish assemblages (Dynesius and Nilsson,
1994; Pringle et al., 2000; Rinne et al., 2005). Numerous
studies in Midwestern rivers have documented blockage of
fish passage and fish assemblage degradation associated
with dams and grade control structures (Santucci et al.,
2005; IDNR, 2010; Butler and Wahl, 2011; Thomas et al.,
2011; Wang et al., 2011). The abundance of dams nationally
(Graf, 1999) and the large literature documenting negative
effects on fish passage and fish assemblages (Rinne et al.,
2005) suggest that these impacts are widespread. The large
number of dams and other man-made structures impeding
fish passage in Iowa rivers and streams (IDNR, 2010;
IWC, 2011; Thomas et al., 2011) suggest that these impacts
are probably also common in Iowa.
The importance of deep pools to many riverine fish

species, the documented preference of some species for deep
pools in Iowa rivers and the pervasive agricultural land use
that reduces availability of deep pools in Iowa rivers led us
to hypothesize that spatial differences in fish assemblage
structure might be related to the availability of deep pool
habitat. We also hypothesized that dams could play a
role, fragmenting portions of rivers and limiting access in
all but the lowermost reaches to the deep pool habitat and
diverse species pool downstream in the Mississippi River.
The overall goal of our study was to characterize the
physical environment and presence of dams in a series of
reaches in three eastern Iowa rivers and relate these charac-
teristics to the fish assemblages present. Special emphasis
was placed on examining relationships with depth character-
istics. Specific objectives were to (i) quantify thalweg depth
and pool characteristics continuously throughout reaches;
(ii) quantify other physical characteristics and presence of
downstream dams at the reach scale; (iii) characterize fish
assemblages at the reach scale by compiling recent sampling
records within reaches; and (iv) explore relationships of fish
assemblages with physical characteristics and presence of
downstream dams.
STUDY AREA

Our study focused on three rivers in northeastern Iowa, the
Maquoketa, Turkey and Wapsipinicon (Figure 1). Study
reaches were determined on the basis of interest from state
management biologists and availability of boat access. The
Maquoketa River is 240 km long and occupies a catchment
Published 2013. This article is a U.S. Government work and is in the public dom
of 4387 km2 (USGS, 2011). Four reaches in the Maquoketa
River (Table I) were sampled, all fifth order at their
upstream ends, but the furthest downstream reach is sixth
order at its downstream end. The Turkey River is similar
in size, 246 km long and occupies a catchment of
4384 km2. Two reaches in the Turkey River (Table I) were
sampled, both fifth order at their upstream ends, but the
furthest downstream reach is sixth order at its downstream
end. The Wapsipinicon River is the longest of the three
rivers at 480 km and occupies the largest catchment at
6565 km2. Six reaches in the Wapsipinicon River (Table I)
were sampled, all fifth order at both their upstream and
downstream ends. All three rivers flow in a southeasterly
direction and are tributary to the Mississippi River, the
Maquoketa entering the upper portion of Pool 13 below
Bellevue, Iowa, the Turkey entering the upper portion of
Pool 11 below Guttenberg, Iowa, and the Wapsipinicon
entering the middle portion of Pool 14 below Clinton,
Iowa (Figure 1). Each of the three rivers has several dams
(Figure 1; Table I) of various heights and other design
characteristics (IDNR, 2004a; IDNR, 2010; IWC, 2011).
One of the dams on the Maquoketa River, the Delhi Dam,
made national news in July 2010 when it was washed out
after heavy rains.
The three rivers flow through three of Iowa’s 10

ecoregions (Grifith et al., 1994). Both Turkey River reaches
are in the Paleozoic Plateau (PP) ecoregion, which differs
from all other Iowa ecoregions due to its lack of recent
glaciations, greater topographic relief, abundant limestone
outcrops and aquifers and relatively thinner soils. Wadeable
streams in the PP tend to be cooler and shadier, have greater
ain in the USA. River Res. Applic. (2013)
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Table I. Physical characteristics of 12 study reaches in three eastern Iowa rivers. Catchment area was calculated from the upstream end
of the reach. Downstream dams is defined as the number of dams between the reach and the Mississippi River. Reach locations are
shown in Figure 1

Catchment Downstream
Reach River Area (km2) Sinuosity Slope (%) Dams

M1 Maquoketa 419.7 1.53 0.0231 6
M2 Maquoketa 427.7 1.42 0.0340 5
M3 Maquoketa 704.1 2.59 0.0583 4
M4 Maquoketa 4249.8 1.53 0.0623 0
T1 Turkey 2109.5 1.56 0.0388 1
T2 Turkey 2708.3 1.86 0.0561 0
W1 Wapsipinicon 2306.3 1.38 0.0311 4
W2 Wapsipinicon 2804.0 1.61 0.0368 3
W3 Wapsipinicon 2983.4 1.48 0.0348 2
W4 Wapsipinicon 3132.7 1.49 0.0306 2
W5 Wapsipinicon 3257.7 1.69 0.0403 1
W6 Wapsipinicon 4026.1 1.65 0.0391 0

FISH ASSEMBLAGES IN EASTERN IOWA RIVERS
width-to-depth ratios, steeper slopes, coarser substrates and
healthier and more diverse fish assemblages than streams
in other ecoregions (Wilton, 2004; Heitke et al., 2006; Rowe
et al., 2009a). The lowest reaches in the Maquoketa and
Wapsipinicon Rivers are in the Southern Iowa Rolling
Loess Prairies (RLP) ecoregion, characterized by moder-
ately rolling topography and loess soils of moderate depth.
Wadeable streams in the RLP tend to have gentler slopes
than the PP and have substrates dominated by sand and silt.
All reaches upstream of the lowest reach in the Maquoketa
and Wapsipinicon Rivers are in the Iowan Surface (IS)
ecoregion, which is a zone of transition between the PP
and the flatter topography, loamier soils, extensive artificial
drainage and intensive row crop agriculture of the Des
Moines Lobe ecoregion to the west. Wadeable streams in
the IS have ratios of fine to coarse substrates intermediate
between the other two ecoregions, and although slopes are
generally comparable with the RLP, temperatures are cooler
in many IS streams due to contributions from limestone
aquifers as in the PP.
METHODS

Physical characteristics and presence of dams

We obtained physical characteristics of study reaches,
including catchment area, sinuosity, channel slope and
locations of dams from existing databases. Catchment area,
sinuosity and channel slope were obtained from the Iowa
Stream Reach Dataset (Loan-Wilsey et al., 2005). Locations
of dams were obtained from the State of Iowa Inventory of
Dams (IDNR, 2004a). Dam locations were used to calculate
the number of downstream dams, defined as the number of
dams on the river between the downstream end of the reach
and the Mississippi River. This characteristic was used as an
Published 2013. This article is a U.S. Government work and is in the public dom
index of fragmentation, representing the number of barriers
to passage between reaches and larger, deeper and more
species-rich waters of the Mississippi River downstream.
We determined thalweg depth and pool characteristics of

study reaches by continuous thalweg depth surveys during
June–September, 2003–2004. Surveys were carried out
from a boat using a Global Positioning System (GPS)-
equipped Marinetek PCS200 echosounder, which recorded
depth and position three times per second onto a laptop
computer. Surveys began at the uppermost point of a study
reach and proceeded downstream slowly, following the
thalweg and recording depths and positions along the entire
reach. Surveys were conducted at or near average flow condi-
tions, and daily stage records from the USGS gauging station
in or nearest to each reach were used to standardize measured
depths by differences between mean daily stages recorded on
the day of surveys and the mean stages for that month and day
over the entire period of record.
Because of various small errors in GPS positioning, raw

spatial positions of depths typically deviated slightly from
the thalweg when superimposed on digital orthophotos. To
establish a line of depth points approximating the thalweg,
we drew a line down the middle of the river channel on
digital orthophotos (IDNR, 2004b) and raw depth positions
were superimposed on this line by moving the shortest
distance to the line. Because of differences in boat speed
and adjusting positions of depth points to a mid-channel
line, the length intervals between raw depth points on this
line were unequal. To adjust the distance between depth
points, a series of 1m intervals was superimposed on the
line of raw depth points, and the closest raw depth to the
endpoint of each 1m interval was used to create a new series
of depth points. The resulting series of depths, standardized
to average stage and adjusted to consistent 1m intervals
along the thalweg of each study reach, was used in
ain in the USA. River Res. Applic. (2013)
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subsequent analyses of thalweg depth and pool characteris-
tics. GIS manipulations were performed in ArcView GIS
3.2 (ESRI, 2006).
We calculated nine variables expressing thalweg depth

and pool characteristics for each study reach from the series
of standardized and adjusted thalweg depths. Thalweg
depth variables included mean depth, median depth and depth
coefficient of variation. Pools were defined as continuous
portions of reaches with thalweg depth≥ 2m. Variables
describing pool characteristics included pool percentage of
reach, pool density (number of pools per kilometer), mean
pool length, pool length coefficient of variation, mean inter-
pool distance (average distance between pools) and inter-pool
distance coefficient of variation.

Fish assemblages

We characterized fish assemblages in study reaches using data
from multiple sources, including samples collected as part of
other studies (Wilton, 2004; Loan-Wilsey et al., 2005;
Gelwicks, 2007) as well as samples collected for this study.
Because the purpose was to characterize and compare fish
assemblages with physical characteristics at the reach scale,
all known samples that targeted the entire fish assemblage
were considered for inclusion. To limit potential biases
due to different sampling methodologies and efficiencies
in different conditions, presence/absence data were used.
To limit potential influence of historical trends in species
occurrence (Sindt et al., 2011, 2012), only samples from
1990 to 2006 were included. Samples were collected from
June to October.
We collected fish by single-pass, daytime, pulsed-direct

current (DC) electrofishing and depending on reach width
and depth at the time of sampling either a barge or boat
electrofisher was used. Length of river sampled varied
depending on wetted width and was approximately equal
to 40 times the mean wetted width. Most samples were
collected by boat electrofishing with three workers, proceed-
ing slowly downstream and moving back and forth across
the thalweg in an attempt to cover all major macrohabitats
and cover objects. When reaches were too shallow to boat
effectively, a barge electrofisher operated by three or more
workers proceeded upstream with dipnetters moving back
and forth across the channel in an attempt to cover all major
macrohabitats and cover objects. Collected fish were placed
in tubs with fresh water, identified to species, tallied,and
returned alive to the river. Samples collected as part of other
studies (Wilton, 2004; Loan-Wilsey et al., 2005; Gelwicks,
2007) used similar methods.

Data analysis

We examined differences among study reaches based on
thalweg depth and pool characteristics by comparing graphs
Published 2013. This article is a U.S. Government work and is in the public dom
of individual variables and collectively using non-metric
multidimensional scaling (NMDS) ordination. For ordina-
tions, thalweg depth and pool variables were first normalized
(mean= 0, standard deviation = 1), then a 12� 12 Euclidean
Distance matrix was calculated, and finally the matrix was
used as input to the NMDS ordination. The normalization,
distance matrix and NMDS ordination were generated using
PRIMER (Clarke and Gorley, 2006).
We also examined similarities in the fish assemblages

present among study reaches and relationships with physical
characteristics and presence of dams using NMDS ordina-
tion. The fish collections described earlier were used to
compile a reach-by-species presence–absence matrix, then
a 12� 12 Bray–Curtis similarity matrix was calculated,
and finally the matrix was used as input to the NMDS ordi-
nation. No species were omitted from the analysis. Variables
expressing physical characteristics and presence of dams
that were significantly correlated with ordination axes were
shown as vectors indicating direction of most significant
gradient, with vector lengths indicating relative strengths
of the relationships. The similarity matrix, NMDS ordination
and vectors were generated using PRIMER (Clarke and
Gorley, 2006). Correlations of NMDS axis scores from
the thalweg depth/pool ordination with axis scores from the
fish assemblage ordination were examined using the CORR
procedure in SAS (SAS Institute, 2009).
We evaluated differences in physical characteristics

and presence of dams between study reaches where fish
species were present and absent with Wilcoxon Rank
Sum exact tests using the NPAR1WAY procedure in SAS

(SAS Institute, 2009).
RESULTS

Physical characteristics and presence of dams

Some physical characteristics were similar among the 12
study reaches, whereas others differed substantially (Table I).
Sinuosity of 11 of the reaches was similar, ranging only
from 1.38 to 1.86, whereas reach M3 on the Maquoketa
River had a much higher sinuosity value of 2.59. All
12 reaches were low gradient with similar % slope values
ranging from 0.0231% to 0.0623%. Other physical charac-
teristics differed markedly among reaches, due to both
natural drainage patterns and human influences. Catchment
areas ranged tenfold, from 420 to 4250 km2. The number of
downstream dams ranged from zero for the lower most
reaches in each of the three rivers to six in reach M1 on
the Maquoketa River.
Thalweg depth characteristics differed among the 12

reaches but to a lesser extent than some other physical char-
acteristics (Figure 2). Reach M2 on the Maquoketa River,
both Turkey River reaches, and reaches W1 and W3-W5
ain in the USA. River Res. Applic. (2013)
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Figure 2. Thalweg depth characteristics of 12 reaches on three
eastern Iowa rivers. The top panel shows the percentage of thalweg
lengths in each of four depth categories: >3m (black); 2–3m (dark

gray); 1–2m (light gray); <1m (white)

FISH ASSEMBLAGES IN EASTERN IOWA RIVERS

Published 2013. This article is a U.S. Government work and is in the pub
Figure 3. Pool characteristics of 12 reaches on three eastern Iowa
rivers. Pools are defined as continuous portions of reaches with

thalweg depth≥ 2m
on the Wapsipinicon River were predominantly shallower
than 1m. Reaches M1, M3 and M4 on the Maquoketa and
reaches W2 and W6 on the Wapsipinicon were predomi-
nantly between 1 and 2m deep. Thalweg depths greater
than 2m were uncommon, except for reach W2 where they
occurred in 22.5% of the reach. Thalweg depths greater than
3m were rare, ranging from absent in reaches T1 and W3 to
a maximum of 4.5% of reach W2. Mean thalweg depths
ranged from 0.6m in reach W3 to 1.7m in reach W2, both
on the Wapsipinicon River. Maximum thalweg depths
ranged from 2.4m in reach T1 to 10m in reach M3; most
of the other study reaches had maximum thalweg depths
between 3 and 6m. The thalweg depth coefficient of varia-
tion ranged from 23 in reach M1 to 73 in reach W1.
Pool characteristics differed markedly among the study

reaches (Figure 3). The pool percentage of reaches ranged
from 0.07% in reach T1 to 22.5% in reach W2. Pool density
lic domain in the USA. River Res. Applic. (2013
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ranged from 0.17 pools/km in reach T2 to 4.3 pools/km
in reach W2. Mean pool length ranged from 2m in reach
T1 to 159m in reach M1. Pool length coefficient of variation
ranged from 71 in reach T1 to 195 in reach W1. Mean inter-
pool distance ranged from 85m in reach M1 to 5.6 km in
)
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reach T2. Inter-pool distance coefficient of variation ranged
from 49 in reach T1 to 213 in reach M2.
Ordination of the study reaches based on the nine

variables describing thalweg depth and pool characteristics
provided an integrated picture of similarities and differences
among reaches (Figure 4). The two-dimensional ordination
had a stress value of 0.08, indicating a good depiction of
relative similarities among reaches and no chance of
misleading interpretation (Clarke and Warwick, 2001). The
two Turkey River reaches grouped closely and apart from
reaches in the other two rivers, reflecting their uniform
shallowness and lack of pools (Figures 2 and 3). Reaches
at the other end of the Depth 1 axis, including W2 and W6
on the Wapsipinicon and M1 and M3 on the Maquoketa,
tended to be the deepest with the greatest mean depths and
pool percentages. Although generally the deepest, these four
reaches did not group closely on the ordination, reflecting
differences in other characteristics such as the uniquely great
maximum depth of M3, large pool percentage of W2 and
great mean pool length of M1. The other six reaches
grouped fairly close together reflecting similar thalweg
depth and pool characteristics, with the minor exception of
greater variation in depth and pool length in W1.
Fish assemblages

The samples we obtained revealed a total of 68 species
across the 12 study reaches (Table II). Eighteen are considered
sensitive species (Wilton, 2004), 14 are species of greatest
conservation need (SGCN) (Zohrer, 2005) and one (common
carp) is non-native. Six species, including common carp,
golden redhorse, northern hog sucker, quillback carpsucker,
Figure 4. Non-metric multidimensional scaling ordination of 12
reaches in three eastern Iowa rivers based on thalweg depth and
pool characteristics. Maquoketa River reaches are represented by
squares, Turkey River reaches by triangles, and Wapsipinicon
River reaches by circles. Reaches are identified inside symbols

Published 2013. This article is a U.S. Government work and is in the public dom
smallmouth bass and walleye, were found in all 12 reaches.
Thirteen species, including black bullhead, bowfin, burbot,
crystal darter, longnose dace, longnose gar, mimic shiner,
Mississippi silvery minnow, Mooneye, Ozark minnow,
rainbow darter, shoal chub and shortnose gar, were found in
only one reach. Seventeen species could be described as
‘downstream-distributed’; 15 of those, including freshwater
drum, gizzard shad, sauger, shovelnose sturgeon, silver chub,
bowfin, burbot, crystal darter, longnose dace, longnose gar,
mimic shiner, Mississippi silvery minnow, mooneye, shoal
chub and shortnose gar being found only in the lowest reach
of one or more rivers and the other two, bigmouth buffalo
and smallmouth buffalo, being found only in lowest reaches
or two or more contiguous reaches including the lowest reach.
Two species, black bullhead and rainbow darter, could be
described as ‘upstream-distributed’, being found only in an
uppermost reach.
The Turkey River had the largest number of species, 56,

compared with 51 species in the Maquoketa River and 50
in the Wapsipinicon River (Table II). More sensitive species,
tolerant species and SGCN were found in the Turkey River
than the other two rivers. Numbers of sensitive species were
12, 14 and 10, numbers of tolerant species were 7, 8 and 6
and numbers of SGCN were 6, 10 and 7 in the Maquoketa,
Turkey and Wapsipinicon Rivers, respectively.
Ordination of the study reaches based on presence–

absence of the 68 fish species provided an integrated picture
of fish assemblage similarities and differences among study
reaches (Figure 5). The two-dimensional ordination had a
stress value of 0.07, indicating a good depiction of relative
similarities among reaches and no chance of misleading
interpretation (Clarke and Warwick, 2001). The lowest
reaches in each of the three rivers were separated widely from
the other reaches at the lowest values of the Fish 1 axis. The
two uppermost reaches in the Maquoketa River were at the
other end of the Fish 1 axis. The two Turkey River reaches
were separated widely from the other reaches at the lowest
values of the Fish 2 axis, although they were separated widely
from each other along the Fish 1 axis.
Five variables expressing physical characteristics and

presence of dams were significantly correlated (p< 0.05)
with ordination axes and were plotted as vectors on the
ordination (Figure 5, top). Downstream dams (+) and catch-
ment area (�) had the strongest relationships with the Fish 1
axis, and slope (�) had a similar but weaker relationship
with Fish 1. Depth coefficient of variation (+) and mean
inter-pool distance (�) had relationships with the Fish 2 axis
that were opposing but similar in strength. The strongest
underlying relationships were the negative correlation
(r=�0.88, p= 0.0002) of the Fish 1 axis with catchment
area and positive correlation (r = 0.89, p = 0.0001) with the
number of downstream dams (Figure 6). The fish assem-
blages in all three rivers followed a very similar pattern of
ain in the USA. River Res. Applic. (2013)
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Table II. Fish species collected from 12 reaches in three eastern Iowa rivers. Species are listed in descending order of percent occurrence in
all reaches. Tolerance ratings (Wilton, 2004) are: T = tolerant, I = intermediate, S = sensitive. An ‘x’ in the species of greatest conservation
need (SGCN) column indicates species of greatest conservation need (Zohrer 2005). Distribution codes, listed separately for each species in
each river, are: A= found in all reaches, L = found in lowest reach only, D= found only in two or more contiguous reaches including the
lowest reach, U= found only in uppermost reach or contiguous reaches including uppermost reach, S = found in some reaches, N=not found.

%
Reaches
Present

Distribution code

Common name Scientific name Tolerance Rating SGCN Maq. R. Tur. R. Wap. R.

Common carp1 Cyprinus carpio T 100 A A A
Golden redhorse Moxostoma erythrurum I 100 A A A
Northern hog sucker Hypentelium nigricans S 100 A A A
Quillback carpsucker Carpiodes cyprinus I 100 A A A
Smallmouth bass Micropterus dolomieu S 100 A A A
Walleye Sander vitreus I 100 A A A
Black crappie Pomoxis nigromaculatus I 92 A L A
Largemouth bass Micropterus salmoides I 92 U A A
Spotfin shiner Cyprinella spiloptera I 92 A L A
Bluegill Lepomis macrochirus I 83 U A U
Bluntnose minnow Pimephales notatus T 83 U A U
Highfin carpsucker Carpiodes velifer I 83 D A A
Northern pike Esox lucius S 83 D U A
Sand shiner Notropis stramineus I 83 U L A
Shorthead redhorse Moxostoma macrolepidotum I 83 D A A
White sucker Catostomus commersoni I 83 A A S
Channel catfish Ictalurus punctatus I 75 D L A
Green sunfish Lepomis cyanellus T 75 A U S
Northern rock bass Ambloplites rupestris S 67 S A S
Orangespotted sunfish Lepomis humilis I 67 U A D
Bigmouth buffalo Ictiobus cyprinellus I 58 D N D
Bullhead minnow Pimephales vigilax I 58 L L S
Common shiner Luxilus cornutus I 58 U A U
River carpsucker Carpiodes carpio I 58 D A S
Silver redhorse Moxostoma anisurum I 58 L L U
Emerald shiner Notropis atherinoides I 50 D A D
Johnny darter Etheostoma nigrum I 50 S L S
Banded darter Etheostoma zonale S x 42 S A S
Bigmouth shiner Notropis dorsalis T 42 S L S
Rosyface shiner Notropis rubellus S 42 S L U
White crappie Pomoxis annularis I 42 N N S
Yellow bullhead Ameiurus natalis I 42 S N S
Brassy minnow Hybognathus hankinsoni I 33 U L D
Central stoneroller Campostoma anomalum I 33 S A N
Flathead catfish Pylodictis olivaris I 33 L L S
Redfin shiner Lythrurus umbratilis I x 33 N A D
White bass Morone chrysops I 33 D L L
Black buffalo Ictiobus niger I x 25 L N S
Blackside darter Percina maculata S x 25 S N S
Creek chub Semotilus atromaculatus T 25 U A N
Fathead minnow Pimephales promelas T 25 U L S
Freshwater drum Aplodinotus grunniens I 25 L L L
Gizzard shad Dorosoma cepedianum T 25 L L L
Hornyhead chub Nocomis biguttatus S 25 S N U
River shiner Notropis blennius I 25 N A L
Sauger Stizostedion canadense I 25 L L L
Shovelnose sturgeon Scaphirhynchus platorynchus S x 25 L L L
Smallmouth buffalo Ictiobus bubalus I 25 L N D
Black redhorse Moxostoma duquesnei S x 17 S L N
Fantail darter Etheostoma flabellare I 17 N A N
Silver chub Macrhybopsis storeriana I 17 L L N
Slenderhead darter Percina phoxocephala S x 17 N L S
Stonecat Noturus flavus I 17 S L N

(Continues)

FISH ASSEMBLAGES IN EASTERN IOWA RIVERS
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Table II. (Continued)

%
Reaches
Present

Distribution code

Common name Scientific name Tolerance Rating SGCN Maq. R. Tur. R. Wap. R.

Suckermouth minnow Phenacobius mirabilis I 17 N L S
Yellow bass Morone mississippiensis I 17 S N N
Black bullhead Ameiurus melas T 8 N U N
Bowfin Amia calva I x 8 N N L
Burbot Lota lota I x 8 N L N
Crystal darter Crystallaria asprella S x 8 N L N
Longnose dace Rhinichthys cataractae S x 8 N L N
Longnose gar Lepisosteus osseus I x 8 N L N
Mimic shiner Notropis volucellus I 8 N L N
Mississippi silvery minnow Hybognathus nuchalis S x 8 N L N
Mooneye Hiodon tergisus S 8 N L N
Ozark minnow Notropis nubilus S x 8 S N N
Rainbow darter Etheostoma caeruleum S 8 U N N
Shoal chub Macrhybopsis hyostoma S 8 N L N
Shortnose gar Lepisosteus platostomus I 8 N N L

1Non-native species.
SGCN, species of greatest conservation need
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change along the gradients of changing catchment area
and number of downstream dams. There were no significant
correlations (p> 0.05) between axis scores from the thalweg
depth/pool and fish assemblage ordinations.
Reaches grouped loosely by ecoregion (Figure 5, bottom),

indicating fish assemblage similarities among reaches within
ecoregions and differences between reaches. The lowest
reaches of the Maquoketa and Wapsipinicon Rivers, in the
RLP ecoregion, grouped tightly on the ordination indicating
very similar fish assemblages. The two Turkey River reaches,
in the PP ecoregion, were grouped loosely and separated from
all other reaches by the Fish 2 axis. The remaining reaches, in
the IS ecoregion, were also grouped somewhat loosely but
separated from reaches in the other ecoregions. Within the
IS ecoregion reaches grouped by river, with the Wapsipinicon
reaches grouped tightly at intermediate values of the Fish 1
axis and the Maquoketa reaches at larger values.
Our Wilcoxon Rank Sum exact tests identified 11 variables

expressing physical characteristics and presence of dams that
differed significantly (p< 0.05) between reaches where at
least one fish species was present versus absent (Table III).
The presence of 25 species was related to at least one variable.
The number of downstream dams differed significantly be-
tween reaches where 12 species were present than where they
were absent, including two SGCN (redfin shiner and shovel-
nose sturgeon). Reaches where species were absent had sig-
nificantly more downstream dams than where they were
present for all but one species (hornyhead chub). Catchment
area differed similarly for 11 species, including one SGCN
(black buffalo), being greater where seven species were
present and greater where the other four species were absent.
Published 2013. This article is a U.S. Government work and is in the public dom
Of the 25 species whose presence was significantly associated
with one or more variables, four (bigmouth buffalo,
smallmouth buffalo, freshwater drum and gizzard shad) were
among the downstream-distributed species described previ-
ously. The presence of four species, including one SGCN
(banded darter), was related to sinuosity, with significantly
higher sinuosity where the species were present. Channel
slope was significantly greater where three species (emerald
shiner, river carpsucker and white bass) were present than
where they were absent. The presence of two game fish spe-
cies, channel catfish and white bass, was related to mean
depth, with significantly greater depths where the species were
present. Depth coefficient of variation was significantly lower
where creek chub and orange-spotted sunfish were present.
Presence of fantail darter was related to five pool variables,
with pools significantly smaller and less prevalent where
fantail darter were present.
DISCUSSION

Despite being fifth order over much or all of their lengths,
the 12 study reaches varied considerably as characterized
by physical characteristics and presence of dams. Catchment
areas varied by an order of magnitude and the number of
dams between reaches and the Mississippi River ranged
from 0 to 6. Although the magnitude of variation was less,
thalweg depth variables illustrated a gradient of reaches
from ones that were primarily less than 1m deep to reaches
averaging well above 1m deep with numerous areas greater
than 2m deep. Maximum depths, representing the deepest
ain in the USA. River Res. Applic. (2013)
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Figure 5. Non-metric multidimensional scaling ordination of 12
reaches in three eastern Iowa rivers based on the presence of fish
species. Reaches are identified as in Figure 4. Top panel shows
relationships with physical, thalweg depth and pool characteristics
as vectors, expressing the joint correlation of the two ordination axes
with characteristics. Only characteristics significantly (p< 0.05
correlated with one of the ordination axes are shown. Vector lengths
indicate relative strength of correlations. Bottom panel shows group

ing of reaches by ecoregion

Figure 6. Relationships of Fish 1 axis scores with catchment area
(top) and the number of downstream dams (bottom) in 12 reaches
in three eastern Iowa rivers. Reaches are identified as in Figure 4
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available ‘holes’ in riverine portions and impoundments
upstream of dams, ranged from less than 3m in two reaches
to four reaches greater than 5m, with one reach having a
maximum depth of 10m. Pools exhibited a much greater
magnitude of variation among reaches than thalweg depths
themselves. The prevalence, size and distance between pools
all varied by over an order of magnitude. Pool density ranged
from three reaches with fewer than one pool every 2 km to two
reaches with more than 3 pools/km. Mean pool length ranged
from 2m to 159m. These spectra of variation resulted in widely
differing conditions and represent considerable potential
influence on fish assemblages inhabiting the 12 study reaches.
Depth has been related to stream fish in numerous studies,

as measured in a variety of different ways and at different
spatial scales. Deep areas in streams have been shown to
lic domain in the USA. River Res. Applic. (2013
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support greater abundance of certain species than shallower
areas (Gerking, 1949; Aadland, 1993), are preferred to
shallower areas by a number of species and life stages
(Moyle and Baltz, 1985; Bisson et al., 1988; Paragamian,
1989; Lobb and Orth, 1991; Aadland, 1993; Gelwicks,
2007), and offer greater refuge from avian predators (Power,
1984; Lonzarich and Quinn, 1995) than shallower areas.
Studies in Iowa rivers have shown that deeper areas are
preferred by both walleye (Paragamian, 1989) and channel
catfish (Gelwicks, 2007) at certain times of the year. Despite
previous demonstrations of the importance of deep areas in
rivers, our results provided scant evidence of effects of
depth and pool characteristics on fish assemblages as a
whole at the reach scale. Fish assemblages in the Turkey
River reaches were quite different from reaches in the other
two rivers, and their low depth variation and large distances
between pools were related to this difference. The presence
of a few species was related to thalweg depth and pool
characteristics. Mean thalweg depths were greater in reaches
where two game fish species, channel catfish and white bass,
)



Table III. Mean physical, thalweg depth and pool characteristics that differed significantly between reaches where species were present or
absent in three eastern Iowa rivers. Scientific names and other information for species are given in Table II

Mean (standard deviation) where species is

Characteristic Species Present Absent

Catchment area (km2) Bigmouth buffalo 3022 (1155) 1594 (1090)
Black buffalo 3802 (592) 1968 (1142)
Bluegill 2085 (1138) 4137 (158)
Bluntnose minnow 2085 (1138) 4138 (158)
Bullhead minnow 3190 (710) 1358 (1213)
Central stoneroller 1485 (1100) 2898 (1180)
Channel catfish 2908 (1030) 985 (973)
Common shiner 1639 (1079) 3529 (568)
Highfin carpsucker 2828 (1004) 424 (6)
Shorthead redhorse 2829 (1004) 425 (6)
Smallmouth buffalo 3844 (520) 1955 (1125)

Sinuosity Banded darter 1.85 (0.44) 1.51 (0.10)
Emerald shiner 1.81 (0.40) 1.48 (0.08)
River carpsucker 1.78 (0.37) 1.46 (0.06)
Stonecat 2.23 (0.52) 1.53 (0.10)

Slope (%) Emerald shiner 0.049 (0.011) 0.032 (0.005)
River carpsucker 0.047 (0.011) 0.031 (0.005)
White bass 0.054 (0.010) 0.034 (0.006)

Downstream dams Emerald shiner 1.0 (1.5) 3.7 (1.6)
Freshwater drum 0 (0) 3.1 (1.8)
Gizzard shad 0 (0) 3.1 (1.8)
Highfin carpsucker 1.7 (1.6) 5.5 (0.7)
Hornyhead chub 4.7 (1.2) 1.6 (1.7)
Redfin shiner 0.5 (0.6) 3.3 (1.9)
River carpsucker 1.3 (1.6) 3.8 (1.8)
River shiner 0.3 (0.6) 3.0 (1.9)
Sauger 0 (0) 3.1 (1.8)
Shorthead redhorse 1.7 (1.6) 5.5 (0.7)
Shovelnose sturgeon 0 (0) 3.1 (1.8)
Smallmouth buffalo 0.3 (0.6) 3.0 (1.9)

Maximum depth (m) Channel catfish 5.2 (2.0) 3.1 (0.7)
White bass 6.3 (2.5) 3.9 (1.1)

Depth coefficient of variation Creek chub 28.5 (5.4) 55.6 (13.9)
Orangespotted sunfish 42.2 (14.7) 61.9 (15.3)

Pool percentage of reach Fantail darter 0.1 (0.1) 7.3 (6.5)
Pool density (number/km) Creek chub 0.38 (0.23) 1.66 (1.32)

Fantail darter 0.26 (0.12) 1.55 (1.28)
Mean pool length (m) Fantail darter 6.9 (6.9) 51.4 (40.9)

Hornyhead chub 89.6 (60.4) 28.8 (18.7)
Pool length coef. of var. Creek chub 90.8 (18.1) 133.6 (31.0)

Fantail darter 83.3 (17.8) 130.8 (30.5)
River shiner 90.9 (18.3) 133.6 (31.0)

Mean inter-pool distance (m) Fantail darter 4393 (1669) 787 (556)
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were present, corroborating previous findings that deep
areas are important to these species (McMahon and Terrell,
1982; Hamilton and Nelson, 1984; Aadland, 1993; IAGFA,
2005; Gelwicks, 2007). Pools were smaller and less preva-
lent on reaches where fantail darter and creek chub were
present, which is consistent with their propensity towards
occupying shallow areas (McMahon, 1982; IAGFA, 2005).
Longitudinal changes along the course of rivers are well-

documented and are the foundation for a major body of
Published 2013. This article is a U.S. Government work and is in the public dom
theory in river science (Vannote et al., 1980; Johnson
et al., 1995). Many physicochemical characteristics change
as rivers flow from headwaters to the sea (Leopold, 1994;
Allan and Castillo, 2007). Longitudinal changes in fish
assemblage structure were first described decades ago (Huet,
1959; Kuehne, 1962) and remain important both in
understanding the ecology of rivers and in managing their
biota and health (Oberdorff et al., 1995; Matthews, 1998;
Simon, 1999). Recent studies in China (Fu et al., 2003),
ain in the USA. River Res. Applic. (2013)
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France (Grenouillet et al., 2004) and in Western (McGarvey
and Hughes, 2008), Southern (McGarvey, 2011) and
Midwestern United States (Chick et al., 2006) demonstrate
similar patterns of fish assemblage change along the
course of rivers. Recent studies in Iowa (Wilton, 2004;
Rowe et al., 2009a; Neebling and Quist, 2010) document
fish assemblage changes along longitudinal and stream size
gradients consistent with patterns documented elsewhere. In
our study, fish assemblages varied strongly with catchment
area. The Fish 1 ordination axis scores of reaches in each
of the three rivers arrayed in a similar pattern in relation to
catchment area, reflecting similar patterns of species change
from upstream to downstream. Black bullhead, rainbow
darter, bluegill, bluntnose minnow, central stoneroller and
common shiner tended to occur in upper reaches with small
catchment areas and were found in few or no lower reaches.
Bigmouth buffalo, black buffalo, emerald shiner, flathead
catfish, freshwater drum, gizzard shad, sauger, shovelnose
sturgeon and smallmouth buffalo showed the opposite
longitudinal distribution, tending to occur in lower reaches
with larger catchment areas and few or no upper reaches.
These tendencies are consistent with previous reports of
their distributions in Iowa and elsewhere (IAGFA, 2005).
Neebling and Quist’s (2010) study is the most comparable
with our study and they found similar distributional patterns.
They distinguished two fish assemblage types on several
Iowa rivers tributary to the Mississippi River, and in most
cases, their ‘Mississippi A’ assemblages were found in
upper reaches (fifth order) and their ‘Mississippi B’ assem-
blages were found in lower reaches (sixth and seventh orders).
The species occurring primarily in upper reaches in our study
occurred in many of Neebling and Quist’s Mississippi A
reaches but sporadically in Mississippi B reaches. Likewise,
the species occurring primarily in lower reaches in our study
occurred in most of Neebling and Quist’s Mississippi B
reaches—especially those that were located in lower reaches
of their study rivers but sporadically in Mississippi A reaches.
Alteration by dams has been shown to have numerous

deleterious effects on rivers and their biota (Dynesius and
Nilsson, 1994; Rosenberg et al., 2000). Dams inundate
riverine habitats (Benke, 1990), alter natural thermal regimes
(Baxter, 1977), alter hydrologic and hydraulic regimes (Graf,
1999; Vörösmarty and Sahagian, 2000), disrupt natural
sediment dynamics (Ligon et al., 1995), alter energy availabil-
ity and utilization (Ward and Stanford, 1979; Power et al.,
1996) and block upstream–downstream passage of fish and
other biota (Pringle et al., 2000). A study of 200 sites through-
out Japan documented significant truncation of native species’
ranges and invasion of impounded reaches by non-native
species resulting from dams (Han et al., 2008). Numerous
studies have documented negative effects of dams on fish in
Midwestern rivers. Blockage of fish passage by dams and
similar structures has been demonstrated in several studies
Published 2013. This article is a U.S. Government work and is in the public dom
(Pellett et al., 1998; Santucci et al., 2005; Butler and
Wahl, 2011; Thomas et al., 2011), with some illustrating
how fragmentation of rivers resulted in truncated distributions
and degraded fish assemblages (Santucci et al., 2005; IDNR,
2010; Gelwicks and Steuck, 2011; Thomas et al., 2011;Wang
et al., 2011). In a review of conservation status of catastomids,
Cooke et al. (2005) listed migration barriers as the greatest
threat to catastomid conservation in Midwestern rivers. In
our study, fish assemblages varied strongly with the number
of downstream dams. The Fish 1 ordination axis scores of
reaches in each of the three rivers arrayed in a similar pattern
in relation to number of downstream dams, reflecting similar
patterns of species change as the number of barriers to
downstream movement increased. Three species, common
shiner, hornyhead chub and rainbow darter, showed a ten-
dency towards the presence in upper reaches isolated from
theMississippi River by several dams and absence from lower
reaches with few or no isolating dams. Many more species,
including bigmouth buffalo, black buffalo, bowfin, burbot,
crystal darter, emerald shiner, freshwater drum, gizzard shad,
highfin carpsucker, longnose dace, longnose gar, Mississippi
silvery minnow, mooneye, redfin shiner, river carpsucker,
river shiner, sauger, shoal chub, shorthead redhorse, shortnose
gar, shovelnose sturgeon, silver chub and smallmouth buffalo,
showed the opposite tendency towards presence in lower
reaches with few or no isolating dams and absence in upper
reaches isolated from the Mississippi River by dams. Block-
age of fish passage, preventing re-colonisation from species-
rich waters downstream and impeding seasonal downstream
migrations of some species, loss of upstream riverine habitat
due to inundation and downstream habitat alteration are all
potential explanations for the orderly gradient in fish assem-
blages along the gradient of downstream dams. Santucci
et al. (2005) found similarly downstream-truncated distribu-
tions in the Fox River, Illinois, for several of the species listed
earlier, including bigmouth buffalo, black buffalo, gizzard
shad, highfin carpsucker, longnose gar, mooneye, river
carpsucker, sauger, shortnose gar and smallmouth buffalo,
and attributed the upstream absence of these species to a series
of dams blocking re-colonisation. The Upper Mississippi
River System supports at least 122 fish species, 74 having
been reported from Pool 13 (Barko et al., 2005), including
all of the species restricted to lower reaches in our study with
the exceptions of crystal darter, longnose dace and shoal chub,
which have been reported in other portions of the Mississippi
River bordering Iowa (IAGFA, 2005). Isolation from this
rich source of species for re-colonisation following floods,
droughts and human-induced stresses seems a plausible
explanation for the pattern we observed.
Our inverse relationships of catchment area and down-

stream dams with fish assemblage change begs the question
of which relationship is more likely the primary one. Or in
other words, which relationship is more likely reflective of
ain in the USA. River Res. Applic. (2013)
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the ultimate cause or causes? Both patterns are supported
with voluminous literatures, and each is an example of
long-debated, competing paradigms regarding the structure
and function of river ecosystems (Vannote et al., 1980;
Ward and Stanford, 1983) and their implications for fishes
(Jungwirth et al., 2000; Roberts and Hitt, 2010). The answer
probably lies somewhere in the middle, with some of the
assemblage differences reflecting natural distributional ten-
dencies of species and some of the differences reflecting
the effects of dams. Without an undammed reference stream
for comparison, it is impossible to partition the effects with
certainty. Clavero et al. (2004) reported a significant influ-
ence of dams on fish assemblages in rivers in Spain but
acknowledged that it was not possible to separate effects
of basin size. Wang et al. (2011) also acknowledged this
conundrum in their analysis of the effects of dams and
other factors on fish assemblages in rivers in Wisconsin
and Michigan. They found a significant relationship of
downstream dams and fish assemblages as we did, but even
more variation in fish assemblage metrics was explained by
river size and other environmental factors. They concluded
that although the fraction of variance explained by dams
was relatively small (<20%), it should not be surprising
considering the many natural factors (e.g. zoogeography,
river size and temperature) plus other anthropogenic
factors (e.g. agriculture, logging and urbanisation) at work
that may be influencing rivers and their fish assemblages.
Evidence from dam removals (Kanehl et al., 1997; Doyle
et al., 2005) strongly suggests that dams have profound
effects on all aspects of the rivers they span, and widespread
dam mitigation including removals is now underway in Iowa
(IDNR, 2010).
The fish assemblage similarities within ecoregions that

were evident in our ordination are probably because of a
combination of ecoregional effects, within-river similarities
and other confounding influences. The lower reaches of
the Maquoketa and Wapsipinicon Rivers had very similar
fish assemblages, and although both were the only reaches
on their respective rivers in the RLP ecoregion, their similar-
ity may be as much a reflection of similarly large catchment
areas and lack of downstream dams than their shared
ecoregion. Likewise, the loose similarities evident among
the other Maquoketa and Wapsipinicon reaches might also
be explained by catchment area and downstream dam
effects. Assemblages in the Turkey River differed substan-
tially from the other rivers and from each other, and these
differences probably reflect both ecoregional effects and
catchment area and downstream dam effects. Ten species,
including fantail darter, black bullhead, burbot, crystal darter,
longnose dace, longnose gar, mimic shiner, Mississippi
silvery minnow, mooneye and shoal chub occurred only in
Turkey River reaches. Fantail darter were found in both
Turkey River reaches, black bullhead only in the upper reach
Published 2013. This article is a U.S. Government work and is in the public dom
and the remaining eight species were found only in the lower
reach. Five of these eight species are considered sensitive
(Wilton, 2004) and three of these plus two others are SGCN
(Zohrer, 2005). The lower Turkey River reach was an interest-
ing case, supporting a unique fish fauna representing several
downstream-distributed species found in the lower reaches
of all three rivers plus some species usually associated with
smaller streams and coarse substrates and several sensitive
species and SGCN. The fish assemblage of the lower Turkey
River reach appears to reflect both the well-documented
influence of the PP ecoregion (Wilton, 2004; Heitke et al.,
2006; Rowe et al., 2009a) and the proximity and free access
to the large Mississippi River species pool.
The collective evidence to date from our study and

many previous studies from both the Midwest and world-
wide suggests that the pervasiveness of dams on rivers
significantly alters fish assemblages, making underlying
patterns of species change and relationships with naturally
varying and human-influenced physical characteristics along
a river’s course difficult if not impossible to discern.
Although we found few strong relationships of fish assem-
blages with thalweg depth and pool characteristics, we
speculate that depth conditions are indeed important to
many fish species in our study rivers as has been shown
elsewhere, and our lack of relationships was at least in part
a function of our spatial and temporal scales of resolution.
A continuous sampling technique for the fish assemblage
to match our continuous depth sampling, as has been dem-
onstrated by Fausch et al. (2002) and Torgersen et al.
(2006) might be more likely to identify depth relationships
at the scale at which they actually occur. The strongest
fish associations demonstrated to date with deep water in
Iowa rivers have occurred in winter (Paragamian, 1989;
Gelwicks, 2007), and thus, our summer and fall fish collec-
tions and the spatial scale of our analysis may have missed
the relationships wintertime collections and a finer scale of
resolution might have revealed. We believe that expanding
previous fish sampling programs in rivers to a continuous
spatial scale and including seasonal differences will help
future studies further clarify the influence of physical and
depth-related factors on fish assemblages.
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