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Abstract
Visual identification of fish eggs is difficult and unreliable due to a lack of information on the morphological egg

characteristics of many species. We used random forests machine learning to predict the identity of genetically identi-
fied Bighead Carp Hypophthalmichthys nobilis, Grass Carp Ctenopharyngodon idella, and Silver Carp H. molitrix
eggs based on egg morphometric and environmental characteristics. Family, genus, and species taxonomic-level ran-
dom forests models were explored to assess the performance and accuracy of the predictor variables. The egg charac-
teristics of Bighead Carp, Grass Carp, and Silver Carp were similar, and they were difficult to distinguish from one
another. When combined into a single invasive carp class, the random forests models were≥ 97% accurate at identify-
ing invasive carp eggs, with a ≤5% false positive rate. Egg membrane diameter was the most important predictive
variable, but the addition of ten other variables resulted in a 98% success rate for identifying invasive carp eggs from
26 other upper Mississippi River basin species. Our results revealed that a combination of morphometric and environ-
mental measurements can be used to identify invasive carp eggs. Similar machine learning approaches could be used
to identify the eggs of other fishes. These results will help managers more easily and quickly assess invasive carp
reproduction.

Aquatic nuisance species are becoming more common
in the United States, and they are expanding their distri-
bution through both natural and anthropogenic dispersal
(Lodge 1993; Rahel 2002; Kolar et al. 2007). First intro-
duced in the 1960s, Grass Carp Ctenopharyngodon idella,
Silver Carp Hypophthalmichthys molitrix, and Bighead
Carp H. nobilis, collectively called “invasive carp” here-
after, have invaded the Mississippi River basin and they
are expanding their range, threatening ecosystem integrity
(Freeze and Henderson 1982; Wittmann et al. 2014).
Efforts to determine areas of current and potential estab-
lishment have largely relied upon the detection of early life

stages (Deters et al. 2013; Coulter et al. 2016; Embke et al.
2016). However, discrepancies and a lack of information
that describes the morphological egg characteristics of
invasive carp and native North American species has
made the visual identification of fish eggs difficult and
unreliable (Richards 1985; Larson et al. 2016). To avoid
the inconsistencies of visual identification, genetic analysis
is often the preferred method for egg identification (Becker
et al. 2015; Coulter et al. 2016; Embke et al. 2016). Unfor-
tunately, genetic analysis is expensive, making it impracti-
cal for use on the large quantities of eggs that are
commonly captured during ichthyoplankton sampling.
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Therefore, cost effective egg identification techniques must
be developed to ensure the accurate and timely detection
of the establishment of invasive carp from large sample
collections, which is vital to rapid response efforts.

Invasive carp eggs have been described in great detail
(Chapman and George 2011; George and Chapman 2013,
2015), but similar detailed visual descriptions do not exist
for many native upper Mississippi River fish species. Conse-
quently, fish eggs that were collected in pools 9 and 11 of
the upper Mississippi River were falsely classified as inva-
sive carp based on membrane size but were later genetically
identified as a native cyprinid (Larson et al. 2016). The mis-
classified eggs had a larger membrane diameter than did
any native fish eggs that had been previously reported in lit-
erature. Insufficient knowledge about the natural variation
of egg morphology within a species due to biotic (e.g.,
female size and fitness; Crean and Marshall 2009) and abi-
otic (e.g., water temperature; Hutchings 1991) factors can
result in inaccurate identification protocols. Furthermore,
the egg morphology of invasive carp may be different or
display greater variability in newly invaded systems due to
the wide range of environmental variability and lack of nat-
ural stressors in nonnative systems compared with their
native range (Mack et al. 2000; Peterson and Vieglais 2001;
Lenaerts et al. 2015). Thus, additional information on fish
egg morphology among native and nonnative species is
needed to clarify and refine the distinguishing visual charac-
teristics that are necessary for correctly identifying eggs in
the Mississippi River basin.

The choice of preservative is of great importance to
morphometric analysis due to differential physical changes
of samples following their preservation (Martinez et al.
2012). Measurements from live specimens offer the best
morphological descriptions of natural conditions. How-
ever, obtaining accurate field measurements of live eggs at
the time of capture is usually not possible and preserva-
tion is required for storage and transport (Kelso and
Rutherford 1996). A growing body of literature suggests
that all forms and combinations of preservation and fixa-
tion change the morphology (e.g., shape, size, and weight)
of the eggs (Kelso and Rutherford 1996; Frimpong and
Henebry 2012), including commonly used preservatives
such as formalin (König and Borcherding 2012) and etha-
nol (Martinez et al. 2012). Unfortunately, most egg
descriptions in the literature, including those for invasive
carp, are of live specimens (Yi et al. 2006; George and
Chapman 2013, 2015) and they do not translate well to
preserved specimens (Martinez et al. 2012). Therefore, the
existing body of literature that describes egg morphology
is only applicable to a small subset of studies.

The objective of this study was to assess whether ran-
dom forests machine learning could be used to accurately
identify invasive carp eggs that have been preserved in
ethanol. Formalin is often the preferred preservative for

ichthyoplankton specimens (Kelso and Rutherford 1996).
However, formalin degrades DNA quality through the
preservation process, hindering genetic identification
(Wiegand et al. 1996; Diaz-Viloria et al. 2005). In con-
trast, ethanol preservation does not affect the integrity of
DNA and is preferred over formalin for material that is
subjected to molecular techniques. We used random for-
ests machine learning to predict the classification of
genetically identified eggs based on morphological and
environmental characteristics. First, we examined several
random forests models to determine the taxonomic reso-
lution that was best suited to accurately predicting inva-
sive carp. Second, we combined all of the invasive carp
species into a single group and reexamined the best taxo-
nomic resolution for predicting invasive carp. Third, we
used a variable importance measure to determine which
variables most accurately predicted invasive carp eggs.
The results of this project provide a quantitative tool that
provides a cost-effective technique for detecting invasive
carp reproduction.

METHODS
Fish eggs were sampled across 2 years at nine locations

along the northern edge of invasive carp reproduction
within the upper Mississippi River and the lower portions
of four major tributaries in southeast Iowa (Figure 1). At
each location, a single transect was established consisting
of a straight line from streambank to streambank, perpen-
dicular to the main flow of the water. Three sample sites
were located on each transect in the thalweg, channel bor-
der, and backwater habitats. Egg sampling was conducted
at each habitat in each transect every 10 d from late April
through the end of September in 2014 and 2015. The habi-
tats were defined by the magnitude of water flow. The
thalweg habitat was located in the portion of the river
with the fastest flowing water, typically in the main chan-
nel. The backwater habitat consisted of areas with little or
no flow such as inside river bends, sloughs, and inundated
floodplains. The channel border habitat had an intermedi-
ate flow relative to the thalweg and backwater habitats
within the same transect. Eggs were collected with an
ichthyoplankton net (0.5 m diameter opening, 500-μm
square mesh) that was towed adjacent to the boat in an
upstream direction just below the water surface for a max-
imum of 4 min (depending on debris load). The boat speed
was kept at a constant relative to the shoreline or at boat
motor idle if the river flow was minimal. During each
tow, water temperature (°C) and conductivity (μS) was
measured with an ExtStik II Conductivity Meter (Extech
Instruments Corporation, Nashua, New Hampshire). After
each tow, the contents of the net were washed into a col-
lection cup on the cod end, drained of water, placed into
jars, and preserved with 95% ethanol.
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In the laboratory, the eggs were separated from the
debris by at least two individuals until no additional eggs
were found. The eggs from each tow were stored in 20-
mL glass scintillation vials with 95% ethanol for no longer
than 6 months before being photographed. More eggs
were collected than could be genotyped. Therefore, a ran-
dom subsampling scheme representative of each tow was
used to capture any spatiotemporal variation within the
species assemblages and egg morphology variation within
a single species (Hutchings 1991). Each subsampled egg
was photographed (with an Olympus SZX7 microscope;
Image Pro 7.0 software, Media Cybernetics, Bethesda,
Maryland) at 2× magnification in a petri dish with just
enough ethanol to cover the egg and to aid in holding the
egg stationary. For eggs with an embryo, the pictures were
taken in the dorsal, ventral, and lateral positions in rela-
tion to the embryo. If an embryo was not identifiable, a
picture was taken after a quarter rotation of the egg on its
y-axis, x-axis, and again on its y-axis. After photograph-
ing, each egg was stored individually in a 5-mL microcen-
trifuge tube with 95% ethanol for genetic analysis.

From the pictures, the eggs were visually categorized
and measured by using Image Pro software. The eggs were
first identified as either having a definable embryo element
within the membrane or not having any discernable
embryo (Figure 2). The embryos were further classified
based on the egg development stages defined in Kelso and

Rutherford (1996). All of the embryos were examined for
the presence or absence of pigment (Figure 2). The egg
membranes were further classified based on the presence
or absence of a deflated membrane and debris adhesion.
Deflated membranes were characterized by a nonspherical
shape with wrinkles, and debris adhesion was character-
ized by organic or inorganic material sticking to the egg
membrane (Figure 2). As defined by Kelso and Rutherford
(1996), four diameter measurements (mm) with starting
points that were equally spaced around the circumference
were taken from the membrane and embryo as well as a
total length measurement (mm) along the midline from all
of the late stage embryos (Figure 3). The average, stan-
dard deviation, and coefficient of variation of the mem-
brane and embryo diameters for each egg were calculated.
Lastly, the visually transparent region between the embryo
and outer membrane, known as the perivitelline space,
was calculated as follows:

Perivitelline space index ¼ 1� embryo average
membrane average

!
:

 

DNA was extracted from the individual eggs by using
the Gentra Puregene Tissue Kit (Qiagen, Germantown,
Maryland) or the Promega Wizard Genomic DNA Purifi-
cation kit (Promega Corp., Madison, Wisconsin) accord-
ing to the manufacturer's suggested protocol and stored at

FIGURE 1. Approximate sampling sites, fish passable lowhead dams, fish barrier reservoir dams, and lock and dams locations in the Des Moines,
Skunk, Iowa, Cedar and upper Mississippi rivers across southeastern Iowa.
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−20°C. Polymerase chain reaction was used to amplify the
portions of the mitochondrial genome corresponding to
the cytochrome b gene using the primers that were devel-
oped by Song et al. (1998) or cytochrome oxidase subunit
I (COI) using the primers that were developed by Ivanova
et al. (2007). The successfully amplified polymerase chain
reaction products were sequenced and manually edited in
Geneious (http://www.geneious.com; Kearse et al. 2012)
and compared with the DNA sequences of known invasive
carp species for positive identification. Noninvasive carp
sequences were identified to species by comparing them
with available data bases of DNA sequences (e.g., Gen-
Bank) or with the NCBI nonredundant database and the
Megablast search algorithm (Altschul et al. 1997, as imple-
mented in Geneious v8.1.7).

A random forests machine learning algorithm (Breiman
2001) was used to predict the taxonomic class of an indi-
vidual egg from an array of predictor variables. For each
egg, 13 egg morphology and four environmental metrics
were recorded as predictor variables and the genetic iden-
tification was recorded as the response variable. The pre-
dictive variables were chosen as an exhaustive list of
potential diagnostic egg characteristics, in which the

discovery of novel relationships and/or diagnostic vari-
ables could be explored. The morphological variables
included the presence or absence of pigment on the
embryo, membrane deflation, debris adhered to the mem-
brane, the presence of a definable embryo, egg develop-
ment stage, average, standard deviation, and coefficient of
variation of membrane and embryo diameter, late-stage
embryo length, and perivitelline space index. Since fishes
do not all spawn at the same time of year and have differ-
ent optimum water conditions for reproduction, environ-
mental variables such as water temperature and
conductivity were measured at each site during egg collec-
tion and the ordinal day and month were included. In ran-
dom forests algorithms, all of the predictor variables must
have a measurement for each observation. Thus, geneti-
cally identified embryos without membranes from Grass
Carp (n= 8), Silver Carp (n= 44), Bighead Carp (n= 1),
Channel Shiner Notropis wickliffi (n= 1), Emerald Shiner
Notropis atherinoides (n= 2), Striped Bass Morone saxatilis
(n= 2), and White Bass Morone chrysops (n= 1) were
excluded from further analysis.

Random forests does not make assumptions about the
normality or independence of the data; it is applicable

(A) (B)

(C) (D)

FIGURE 2. Fish eggs depicting examples of the predictor variables that were used in the random forests model. The four panels show (A) an egg
with pigment on a definable embryo, (B) an egg with a deflated outer membrane and a definable embryo, (C) an egg with debris sticking to the outer
membrane, and (D) an egg with no discernable embryo.
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with continuous and categorical variables; it is relatively
robust to outliers, noise, and autocorrelation; and it is a
commonly used prediction model (Breiman 2001; Cutler
et al. 2007; Maroco et al. 2011). Using random forests
allowed for a large number of variables and many combi-
nations of the variables to be explored for more accurately
predicting egg identification at various taxonomic levels.
In addition, random forests uses a random bootstrapped
sample (63%) of the original data to construct 5,000 classi-
fication trees and a random subset of the predictor vari-
ables is chosen for each node (split) in a tree (Prasad et al.
2006). Combinations of three to four randomly selected
predictor variables were chosen for each node. Growing a
large number of trees using bootstrapped data is effective
at reducing the generalization error that is associated with
the model training set, and randomly selecting predictor
variables at each node reduces bias and variance by
decreasing the correlation of the trees. The resulting model
does not overfit the data (Breiman 2001). The remaining
unused original data (out-of-bag observations; 37%) for
each tree are then run through the associated tree and
given a predicted classification. The final prediction for
each observation is the class with the most votes across all

trees. Accuracies and error rates are computed using the
out-of-bag predictions and averaged across all observa-
tions. There is no need to manually cross validate random
forests since each tree is constructed without the out-of-
bag observations, which provides the opportunity to use
all of the available egg data. Random forests also inter-
nally calculates the out-of-bag error estimates that are
analogous to cross validation error estimates and a classi-
fication error (Breiman 2001).

A total of five random forests models using all of the
predictor variables were created to evaluate their ability to
accurately identify invasive carp eggs at various taxo-
nomic levels. Two of the models classified eggs to genus
or species, and three additional models combined the eggs
from Silver, Bighead, and Grass carp into a single class
called invasive carp, with all of the other species grouped
to family, genus, or species. For each random forest
model, three metrics were calculated for each class that
was associated with invasive carp from the random forests
confusion matrix. The confusion matrix depicts the perfor-
mance of random forests predictions compared with the
identifications determined by genetics. Predictive accuracy
was defined as the accuracy of the random forests models

(A) (B)

(C)

FIGURE 3. Diameter measurement placement for (A) outer membrane, (B) embryo, and (C) midline measurements on all of the later-stage embryos.

MORPHOLOGICAL IDENTIFICATION OF CARP EGGS 5



at predicting the correct genetic identification, calculated
as follows:

Predictive accuracy ¼ cpclass
nclass

;

where, cpclass = frequency of correct predictions of a class
and nclass = frequency of eggs genetically identified in a
class. False positive error was defined as the proportion of
incorrect predictions of genetic identifications from a class
and was calculated as follows:

False positive error ¼ WPclass

N � nclass
;

where WPclass = frequency of wrong predictions of a class,
N= total frequency of genetic identifications from all
classes. Nontarget taxa accuracy was defined as the pro-
portion of correct predictions of nontarget classes from all
nontarget genetic identifications and was calculated as fol-
lows:

Nontarget taxa accuracy ¼ ∑cpnt:class
N �∑nnt:class

;

where, cpnt.class= the correct predictions of a nontarget
class and nnt.class= the frequency of genetic identifications
of a nontarget class. All of the proportions were reported
as percentages. All of the statistical analyses were con-
ducted using R software (R Core Team 2013) and the
“randomForest” package (Breiman 2001; Liaw and
Wiener 2002). The R code and example data set for the
study can be found in the Supplement available in the
online version of this paper.

To reduce the number of predictor variables that were
needed to accurately predict invasive carp, we used the
variable importance measure to rank all of the predictor
variables. A series of random forests models were created
using a stepwise ascending variable introduction strategy.
Random forests analysis uses an approach to measure
variable importance that differs from the commonly used
statistical methods for models that use Akaike's Informa-
tion Criterion (Liaw and Wiener 2002). However, the use
of a variable importance measure is effective at identifying
predictor variables for elimination without sacrificing the
model's predictive accuracy (Oh et al. 2003; Genuer et al.
2010). Random forests uses a Gini importance measure,
defined as a predictor variable's degree of discriminability
between classes (Oh et al. 2003). At every node of every
tree, at least one of the predictor variables is used to form
a split, resulting in a decrease of the splitting criterion.
The Gini measure is computed as the sum of all of the
decreases in the splitting criterion within the random for-
ests trees due to a given variable, normalized by the

number of trees grown (Breiman 2001). Therefore, predic-
tor variables with low Gini measure scores are less infor-
mative for discriminating between classes and may be
eliminated. The Gini measure from the species-level ran-
dom forests model containing a single class for all of the
invasive carp species was used to order the predictor vari-
ables based on importance. A sequence of random forests
was initiated, starting with the most important variable
and adding the next most important variable until all of
the variables were used (Genuer et al. 2010). The class
error and false positive error associated with the invasive
carp class from each of the random forests was calculated
and then summed to calculate the total invasive carp
error. Class error was calculated as

Class error ¼ 1� predictive accuracy.

The random forests model with the smallest total invasive
carp error was considered the most parsimonious model
for efficiently predicting invasive carp egg identification.

Partial dependence plots specific to the invasive carp
class were created for the final reduced predictor variable
random forests. Partial dependence plots show the relative
importance of each variable for predictions when the
effects from all of the other variables are accounted for.
Positive values have a higher influence on correctly pre-
dicting a specific class, and values near zero contribute lit-
tle to accurate predictions.

RESULTS
A total of 10,205 eggs were collected from May 5 to

September 26 in 2014, and 5,929 eggs were collected from
April 23 to September 25 in 2015. A subset of 2,061 eggs
were measured and genetically identified. Genetic analysis
successfully identified 57% (734 out of 1,294) eggs from
2014 and 71% (541 out of 767) eggs from 2015. Four species
combined accounted for 83% of the identified eggs: Fresh-
water Drum Aplodinotus grunniens (32%), Silver Carp
(29%), Emerald Shiner (12%), and Grass Carp (10%). The
remaining 17% were composed of 25 other species, includ-
ing Bighead Carp (1%). Egg membrane diameter was lar-
gest for Fathead Minnow Pimephales promelas (4.01 mm±
0.71; mean ± SD) followed by Grass Carp (3.47 mm±
0.66), Bighead Carp (3.43 mm ± 0.55), Silver Chub Macrhy-
bopsis storeriana (2.97 mm ± 0.80), Silver Carp (2.84 mm±
0.80), and Goldeye Hiodon alosoides (2.71 mm± 0.55). All
of the other species had average membrane diameters<
2.20 mm. Egg membrane diameter ranged from 1.79 to
4.90 mm for Grass Carp, 2.26 to 4.04 mm for Bighead
Carp, and 1.46 to 4.33 mm for Silver Carp.

Genus and species random forests models with Silver,
Bighead, and Grass carp evaluated in their respective tax-
onomic classes had low predictive accuracy and difficulty
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with distinguishing invasive carp taxonomic classes from
one another (Table 1). In the genus model, 56% (29 of 42)
of the false negatives for Hypophthalmichthys were pre-
dicted as Ctenopharyngodon and 93% (37 of 40) of the
false negatives for Ctenopharyngodon were predicted as
Hypophthalmichthys (Table 1). Furthermore, 58% (37 of
64) of the false positives that were predicted as Hypoph-
thalmichthys were Ctenopharyngodon and 88% (29 of 33)
of false positives that were predicted as Ctenopharyngodon
were Hypophthalmichthys. In the species level model,
100% (12 of 12) of the false negatives for Bighead Carp
were predicted as either Grass or Silver carp, 80% (30 of
34) of the false negatives for Grass Carp were predicted as
Silver Carp, and 73% (30 of 41) false negatives for Silver
Carp were predicted as either Bighead or Grass carp
(Table 1). Furthermore, 100% (1 of 1) of the false positives
for predicted Bighead Carp were Silver Carp, 87% (33 of
38) of predicted Grass Carp were Silver Carp and Bighead
Carp, and 56% (38 of 68) of predicted Silver Carp were
Bighead and Grass Carp. When Bighead, Grass, and Sil-
ver Carp were combined into a single invasive carp class
and the random forests were re-run, the predictive
accuracy increased and was constant across all three taxo-
nomic levels (Table 1). Overall, random forests successfully
predicted 97% of invasive carp eggs and had low invasive
carp false positive rates (4–5%). The only difference
between the three invasive carp random forests models
was in their nontarget taxa accuracy.

The variable reduction analysis of the species random
forests models with the combined invasive carp class using
the decreased mean Gini scores resulted in the inclusion of
11 variables (membrane average, embryo average, deflated
membrane, membrane SD, water temperature, pigment
presence, ordinal day, perivitelline space index, membrane
coefficient of variation, conductivity, and embryo SD) and
the elimination of six predictor variables (Table 2). The

reduced variable random forests incorrectly identified 2%
of the invasive carp and had a 5% false positive error
(Table 2). Of the 486 genetically identified invasive carp
eggs that were used for the analysis, two were falsely pre-
dicted as Channel Shiner, seven were predicted as Emerald
Shiner, and one was predicted as a River Shiner Notropis
blennius. False positive predictions were distributed across
nine species, but half of all 36 false positive invasive carp
predictions were genetically Silver Chub Macrhybopsis
storeriana (Table 3).

In the final random forests analysis with the reduced
predictor variables and combined invasive species class,
positive values for all of the partial dependence plots
specific to invasive carp show that all of the variables were
important for predicting invasive carp. However, their
importance varies within each variable (Figure 4). For
example, the importance of membrane and embryo size
and variation increased with average size and variability,
indicating that few other species classes had large or vari-
able membrane or embryo size (Figure 4). However, the
perivitelline space index was more important up to 0.65
and then declined, indicating there are other species
classes with similar values above 0.65.

DISCUSSION
To our knowledge, this is the first study to use a ran-

dom forests machine learning algorithm to predict the
identity of eggs. Visually identifying eggs is a desirable
goal, but it is difficult and often error prone due to a lack
of information (Richards 1985). Furthermore, morphologi-
cal changes from preservation techniques render descrip-
tions of live specimens inadequate. However, our results
demonstrate that using a combination of morphometric
and environmental measurements from genetically identi-
fied preserved eggs in a random forests algorithm can

TABLE 1. Invasive carp predictive accuracy and false positive rate and nontarget taxa accuracy for each taxonomic, variable, and invasive carp clas-
sification combination that was used within each random forests model.

Taxonomic
level–variables Classes

Invasive carp

Nontarget
taxa accuracy (%)Classes

Predictive
accuracy (%)

False positive
rate (%)

Genus–all 17 Ctenopharyngodon 68 3 72
Hypophthalmichthys 88 7 83

Species–all 29 Bighead Carp 8 0 50
Grass Carp 73 3 71
Silver Carp 88 7 82

Family–all 8 Invasive carp 97 4 94
Genus–all 16 Invasive carp 97 4 93
Species–all 27 Invasive carp 97 5 93
Species–reduced 27 Invasive carp 98 5 93

MORPHOLOGICAL IDENTIFICATION OF CARP EGGS 7



accurately identify eggs from the upper Mississippi River
basin. Specifically, we were able to use random forests to
identify invasive carp (a combined sample of Bighead,
Grass and Silver carp). Random forests applications in
ecological studies are limited (but see Dub et al. 2013;
George et al. 2018), but its performance as a classification
tool successfully met the objectives of this study.

We used a variable importance measure within random
forests to determine that a multitude of morphometric and
environmental characteristics were needed to differentiate
invasive carp eggs from those of other upper Mississippi
River fishes. Egg membrane diameter was the most impor-
tant variable for identifying invasive carp eggs. However,
membrane diameter alone is not diagnostic of invasive
carp (George and Chapman 2013; Larson et al. 2016).
Invasive carp egg membranes ranged from 1.0 to 5.5 mm

and overlapped with all of the other species except Giz-
zard Shad Dorosoma cepedianum. However, the most
common invasive carp membrane sizes overlapped with
only a few species, such as Silver Chub and Fathead Min-
now, resulting in false positive predictions. Fathead Min-
now eggs were largest on average in the collection, with
some approaching 5 mm, and substantially larger than the
1.4 to 1.6 mm size from live specimens, initially reported
by Wynne-Edwards (1932). Egg membrane size descrip-
tions for Silver Chub are scarce, making comparisons with
other studies difficult. Goldeye also shared similar mem-
brane sizes to invasive carp, but they could be correctly
distinguished from invasive carp by using water tempera-
ture. Due to the overlap in egg membrane sizes among
fishes, the addition of other egg and environmental char-
acteristics are critical for successful identification.

The egg characteristics of Grass Carp, Bighead Carp,
and Silver Carp were similar and could not be distinguished
from each other in this study. Each species has a very large
egg membrane diameter (Yi et al. 2006; George and Chap-
man 2013, 2015), but the eggs that were collected in this
study had smaller membrane diameters than did those from
live specimens from the Yangtze River, China (Yi et al.
2006), lower Missouri River, USA (George and Chapman
2013), and Silver Carp eggs that were collected from the
Wabash River, Indiana (Lenaerts et al. 2015). Furthermore,
invasive carp eggs from the upper Mississippi River that
were preserved with formalin showed less variability in
membrane and embryo diameter than they did in this study
(Larson et al. 2016). These differences may be attributed to
the desiccating properties of ethanol (Kelso and Rutherford
1996). Additionally, the variation may be attributed to the
compounding factors of maternal effects (i.e., larger females
produce larger eggs; George and Chapman 2013), water
temperature (i.e., warmer water temperature yields larger
eggs; George and Chapman 2013, 2015), and water chem-
istry (i.e., eggs absorb more water and become larger in soft
water; Rach et al. 2010). These differences may also con-
tribute to variation in sizes of ethanol-preserved eggs since
eggs were collected from multiple watersheds and through-
out each year where biotic and abiotic factors may be dif-
ferent. Even though average sizes may be different, the
wide range of egg-size variation in all three of the invasive
carp species makes differentiating among the species diffi-
cult and ineffective. Although there are some morphologi-
cal differences among invasive carp during a few
developmental stages (Yi et al. 2006), these do not persist
through all stages. When identifying eggs based solely on
morphology, a conservative approach that combines all
invasive carp species into a single class should be used and
subsequent genetic testing should be used to identify inva-
sive carp eggs to species.

By not specifying a diagnostic range of values for a vari-
able, random forests was able to create its own set of rules.

TABLE 2. Invasive carp class error, false positive error, and total error
results from the variable reduction analysis. The predictor variables were
added to each subsequent model in a step-forward process based on
mean decrease in Gini scores from the species random forests algorithms
with Silver, Bighead, and Grass carp combined into a single class. The
reduced model contained all of the variables that are marked with an
asterisk.

Variable added

Invasive carp

Class
error
(%)

False
positive error

(%)

Total
error
(%)

Membrane average* 24.49 14.96 39.44
Embryo average* 9.05 9.25 18.31
Deflated membrane* 4.32 9.13 13.45
Membrane standard
deviation*

5.35 8.11 13.46

Water temperature* 4.12 6.59 10.71
Pigment presence* 3.50 7.10 10.60
Ordinal day* 2.67 5.07 7.74
Perivitelline space
index*

3.09 5.32 8.41

Membrane coefficient
of variation*

3.29 4.69 7.98

Conductivity* 2.47 4.31 6.78
Embryo standard
deviation*

2.06 4.56 6.62

Embryo coefficient of
variation

2.47 4.69 7.16

Debris adhesion to
membrane

2.26 5.07 7.33

Egg stage 2.26 5.20 7.46
Month 2.26 5.83 8.09
Embryo midline length 2.88 4.94 7.82
Definable embryo 2.47 4.82 7.29
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Larson et al. (2016) described a single set of values for egg
membrane size as a diagnostic characteristic. If the same
criterion had been applied to our collections, 30% of the
genetically identified invasive carp eggs would have been
misclassified with a 6% false positive rate. This is a 28%
higher misclassification rate and 1% higher false positive
rate than was obtained with the model produced herein.
For monitoring the presence of invasive carp reproduction,
false positives are far less troublesome than are failures to
identify a true invasive carp egg. This is especially true in
areas of new reproduction when quick management
responses may be necessary to curb population expansion

and possible establishment. Thus, although random forests
also had misclassifications and false positives, the rates were
lower than those that have been obtained with other meth-
ods that have been published, providing the best method
currently available for identifying eggs.

Using random forests to identify invasive carp eggs that
were collected from the upper Mississippi River basin
proved to be successful even though some species had few
samples. Having more samples would have provided ran-
dom forests with a better grasp of the variability within a
given predictor variable for each species; thus, giving it
greater predictive ability. Furthermore, it is beneficial to

TABLE 3. Confusion matrix of genetic and random forests predicted identifications. Silver, Bighead, and Grass carp were combined into a single
invasive carp class.

Genetic identification and
class Species

Total
genotyped

Predicted identification

Invasive
carp

Nontarget species
(summed)

Target species
Invasive carp Ctenopharyngodon idella 486 476 10a

Hypophthalmichthys
molitrix
Hypophthalmichthys nobilis

Nontarget species
Banded Darter Etheostoma zonale 1 1 0
Bigmouth Buffalo Ictiobus cyprinellus 7 1 6
Black Buffalo Ictiobus niger 1 0 1
Buffalo spp. Ictiobus spp. 10 0 10
Carpsuckers spp. Carpiodes spp. 1 0 1
Channel Shiner Notropis wickliffi 32 0 32
Common Logperch Percina caprodes 1 0 1
Common Shiner Luxilus cornutus 1 0 1
Emerald Shiner Notropis atherinoides 157 3 154
Fathead Minnow Pimephales promelas 5 4 1
Freshwater Drum Aplodinotus grunniens 429 3 426
Gizzard Shad Dorosoma cepedianum 2 0 2
Goldeye Hiodon alosoides 6 1 5
Quillback Carpiodes cyprinus 1 0 1
River Carpsucker Carpiodes carpio 8 0 8
River Shiner Notropis blennius 13 0 13
Sand Shiner Notropis stramineus 1 0 1
Shiner spp. Notropis spp. 33 0 33
Silver Chub Macrhybopsis storeriana 36 18 18
Skipjack Shad Alosa chrysochloris 1 0 1
Smallmouth Buffalo Ictiobus bubalus 2 0 2
Speckled Chub Macrhybopsis aestivalis 15 3 12
Spotfin Shiner Cyprinella spiloptera 6 0 6
Temperate Bass Morone spp. 17 2 15
Walleye Sander vitreus 2 0 2
White Bass Morone chrysops 1 0 1

aGenetically identified invasive carp eggs were predicted as Channel Shiner (n= 2), River Shiner (n= 1), and Emerald Shiner (n= 7).
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have more samples in classes that are known to have over-
lapping values or high variation for a predictor variable
(Rodriguez-Galiano et al. 2012; Brown et al. 2014). This
could be achieved by including collections over many
years or across geographic locations to increase sample
sizes of rare or uncommon taxa. This would also increase
its spatiotemporal application for identification. Random
forests procedures could also be used as a prescreening
tool to increase the probability that an egg that is submit-
ted for genotyping is an invasive carp or as a backup
method for identification when genetic techniques fail
(e.g., only 65% of eggs that are submitted were success-
fully genotyped in this study). This method could be used
in combination with eDNA sampling of ichthyoplankton
trawls to determine which eggs to submit for genetic vali-
dation from eDNA positive trawls (Fritts et al. 2018).
Regardless of application, we would suggest that any eggs
that random forests has classified or misclassified as inva-
sive carp (e.g., Silver Chub) be genetically verified to

validate the results in areas where invasive carp have not
yet been documented to reproduce.

It is important to note that the specifics of the random
forests algorithms that were used in this study may not be
directly applicable to other areas with different fish assem-
blages or for studies with a different objective. If a species
is not in the data set, random forests will not have suffi-
cient information to correctly identify the missing species.
Future model validation with an independent data set
would help to determine how broadly applicable our
model results are at identifying fish eggs during different
periods and from different locations. Aggregating similar
groups into a single class can be useful, such as was used
in this study for our target species, but may not be suit-
able for all studies, depending on the study objectives.
Regardless, the model approach that we have outlined
here allows biologists to customize random forests with
abiotic and biotic features that would be effective for iden-
tifying fish eggs of other species and in other systems.

FIGURE 4. Partial dependence plots of the predictor variables from the random forests predictions that were used to identify invasive carp eggs.
Partial dependence depicts the relative importance of a single variable to predicting an egg as being an invasive carp after averaging out the effects of
all of the other variables. Positive values have a higher influence on correctly predicting invasive carp, and values near zero contribute minimally to
accurate predictions.
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