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Abstract: Continuous harvest over an annual period is a common assumption of continuous biomass dynamics models
(CBDMs); however, fish are frequently harvested in a discrete manner. We developed semidiscrete biomass dynamics mod-
els (SDBDMs) that allow discrete harvest events and evaluated differences between CBDMs and SDBDMs using an equili-
brium yield analysis with varying levels of fishing mortality (F). Equilibrium fishery yields for CBDMs and SDBDMS
were similar at low fishing mortalities and diverged as F approached and exceeded maximum sustained yield (FMSY). Dis-
crete harvest resulted in lower equilibrium yields at high levels of F relative to continuous harvest. The effect of applying
harvest continuously when it was in fact discrete was evaluated by fitting CBDMs and SDBDMs to time series data gener-
ated from a hypothetical fish stock undergoing discrete harvest and evaluating parameter estimates bias. Violating the as-
sumption of continuous harvest resulted in biased parameter estimates for CBDM while SDBDM parameter estimates were
unbiased. Biased parameter estimates resulted in biased biological reference points derived from CBDMs. Semidiscrete
BDMs outperformed continuous BDMs and should be used when harvest is discrete, when the time and magnitude of har-
vest are known, and when F is greater than FMSY.

Résumé : Si les modèles continus de dynamique de la biomasse (CBDM) partent souvent du principe que la capture est
continue au cours d’une période annuelle, les prises de poissons s’effectuent fréquemment de manière discrète. Nous avons
mis au point des modèles semidiscrets de dynamique de la biomasse (SDBDM) qui permettent l’intégration d’évènements
de prise discrets et avons évalué les différences entre les CBDM et les SDBDM à la lumière d’une analyse du rendement
équilibré à différents taux de mortalité par pêche (F). À de faibles F, les CBDM et les SDBDM ont donné des rendements
équilibrés semblables, l’écart entre ces derniers augmentant à mesure que F s’approche puis dépasse le rendement maximum
durable (FMSY). L’intégration de prises discrètes s’est traduite par des rendements équilibrés plus faibles à des F élevés que
ceux obtenus pour des prises continues. L’incidence de l’utilisation de prises continues dans des cas où les prises sont en
fait discrètes a été évaluée en ajustant les CBDM et les SDBDM aux données de séries chronologiques générées pour un
stock hypothétique de poissons faisant l’objet de prises discrètes et en évaluant le biais des estimations de paramètre. L’inté-
gration de prises discrètes a fait en sorte que les CBDM ont donné des estimations de paramètre biaisées alors que les esti-
mations de paramètre découlant de SDBDM n’étaient pas biaisées. Les estimations de paramètre biaisées se sont traduites
par des points de référence biologiques biaisés découlant des CBDM. Les SDBDM ont donné de meilleurs résultats que les
CBDM et devraient être utilisés dans les cas où la capture est discrète, où le moment et la magnitude des prises sont connus
et où F est supérieur à FMSY.

[Traduit par la Rédaction]

Introduction

Biomass dynamics models (BDMs) are the simplest stock
assessment models used to manage fish stocks when stock
data are limited to biomass harvested and biomass estimates
or indices. Compared with more complex stock assessment
models, biological realism is simplified with BDMs because
population structure data (e.g., age, length) are not consid-

ered (National Research Council 1998). Despite simplified
biological realism, BDMs are a convenient assessment ap-
proach, which in some cases have outperformed more sophis-
ticated age- or stage-structured assessments (Ludwig and
Walters 1985, 1989).
Continuous biomass dynamics models (CBDMs) predict

biomass at any time and take the form of an ordinary differ-
ential equation (ODE): dB/dt = f(B) – C, where dB/dt is the
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change in biomass (B) over time, f(B) is the biomass produc-
tion function, and C is the amount of biomass harvested (Po-
lacheck et al. 1993). Biomass production is a function of
biomass, representing the net effect of population processes
(e.g., somatic growth, recruitment, mortality) on change in
biomass over time (Schaefer 1954; Hilborn and Walters
1992; Prager 1994). The exponential model is the simplest
CBDM producing a range of biomass dynamics (i.e., increas-
ing, decreasing, no change) using the production function
f(B) = r·B. The exponential model provides a way to repre-
sent biomass dynamics in situations where there are insuffi-
cient data to resolve more complex models that require
additional parameters (e.g., Bmax). However, since the expo-
nential model does not limit biomass production, unrealisti-
cally high biomass predictions can result. Therefore, it
provides limited utility and predictive ability for fisheries
management.
The flexible trajectory of the exponential model provides a

foundation for more complex BDMs that include density-
dependent constraints to limit production. The Schaefer
(Schaefer 1954), Fox (Fox 1970), and Pella–Tomlinson (Pella
and Tomlinson 1969) models are common BDMs used to as-
sess fish stocks that include a carrying capacity parameter,
but vary in underlying assumptions of how production is re-
lated to biomass. In addition to continuously operating popu-
lation processes, a common assumption of all CBDMs is
continuous application of harvest over an annual period,
which has been identified as a shortcoming of CBDMs (Na-
tional Research Council 1998).
Accurate assessment of parameters representing stock bio-

mass dynamics is important for managing fisheries. Parame-
ter estimates from CBDMs are used to calculate biological
reference points (i.e., MSY, BMSY, FMSY, F0.1) used to man-
age fish stocks, where maximum sustainable yield (MSY) is
a function of stock productivity, FMSY is the fishing mortality
(F) that maximizes sustained yield, and BMSY is the resulting
standing biomass of a stock being harvested at MSY (Cadima
2003). To prevent overfishing, harvesting at MSY has been
reduced by finding the fishing mortality that is 10% of the
slope of the production curve at the origin (F0.1) and using
that value to set harvest limits. Violating model assumptions
can bias parameter estimates, resulting in biased biological
reference points, which may have consequences for fish stock
management. For example, Polacheck et al. (1993) found that
incorrectly assuming a population was in equilibrium prior to
fishing resulted in overestimating potential yield and opti-
mum effort. The effect of assuming continuous harvest of
fish stocks actually undergoing discrete harvest on parameter
estimates and biological reference points is uncertain and
worthy of examination.
Inland freshwater commercial fisheries intended to reduce

overabundant (hereafter referred to as nuisance) fish species
represent an extreme discrete application of harvest within
an annual period. Commercial fisheries are commonly used
to minimize the effects of common carp (Cyprinus carpio)
on water quality in aquatic systems (Cahoon 1953; Arling-
haus and Mehner 2003; Chumchal et al. 2005). Commercial
fisheries for common carp are unique because they can occur
over a range of aquatic system areas (100 ha to more than
10 000 ha) with short duration (<5 days) harvests, often dur-
ing spring and fall to minimize thermal-related mortality of

sport fish bycatch (Rose and Moen 1953). Infrequent but in-
tense harvest events of common carp contrast sharply with
the continuous assumptions of CBDMs. Biomass dynamics
characterized by large instantaneous decreases rather than
smooth gradual changes over time are an ideal situation to
evaluate the assumption of continuous harvest (Fig. 1).
Discrete fishery harvest is not limited to nuisance fishes.

There are several conditions where fish are harvested over a
very short period of time within a year and therefore should
be treated as a pulsed harvest. Many species are harvested
during migration periods. For example, white sucker (Cato-
stomus commersonii) commercial fisheries in Maine typically
occur in the spring where traps intercept sexually mature fish
for use as lobster bait (M. Colvin, personal observation). Ad-
ditionally, anadromous fishes are harvested over a short sea-
son (i.e., 1–2 weeks) in coastal river systems when excesses
allow. Flesh and caviar fisheries can occur over a relative
short period of time when mature females are abundant. For
example, a paddlefish (Polyodon spathula) snagging fisheries
on the Missouri River occur over a 2-week span while fish
are sexually mature and vulnerable to exploitation (Jennings
and Zigler 2000; Mestl and Sorensen 2009). Additionally,
some fish stocks can experience a combination of discrete
and continuous fishing mortality. For example, tribal walleye
(Sander vitreus) harvest by spearing occurs within a few
weeks in the spring, while traditional recreational angling oc-
curs over the annual period in the ceded territories of Wis-
consin (Hansen et al. 2010). Additionally, Da-Rocha et al.
(2012) found that optimal fishing strategies for European
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Fig. 1. Hypothetical fish stock biomass dynamics illustrating con-
tinuous (dotted line) and discrete (solid line) commercial harvest.
Model parameters and annual harvest are the same for both models,
but harvested biomass is removed continuously in the continuous
model and discretely in the semidiscrete model.
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hake (Merluccius merluccius) were dependent on whether
fishing occurred continuously or in periodic pulses.
Difference models can be used to represent discrete bio-

mass dynamics phenomena (Hilborn and Walters 1992), but
small time steps (e.g., daily, weekly) are needed to realisti-
cally model infrequent, intense bouts of harvest associated
with nuisance species. Altering model time step to days or
weeks results in parameters that may be difficult to interpret
and apply, as the majority of inland fisheries statistics are pri-
marily available as annual values (Allen and Hightower
2010). Even with sufficiently short discrete time steps, the
net effects of processes such as predation, growth, recruit-
ment, and senescence on production may be more realisti-
cally modeled continuously rather than discretely. Neither
continuous nor discrete (i.e., difference) BDMs adequately
accommodate discrete harvest in a way that would result in
useful biological reference points. A framework allowing for
a combination of continuous and discrete biomass dynamics
would increase biological realism by representing discrete
harvest within continuous population processes governing
biomass production.
Semidiscrete models are a hybrid class of models that can

be used to simultaneously represent continuous processes and
discrete events (Mailleret and Lemesle 2009). However,
semidiscrete models have rarely been used in biological mod-
eling or applied management settings because solving these
models requires complex algebra and calculus to integrate
equations over time and derive analytical solutions, if they
exist at all (Mailleret and Lemesle 2009). Advanced
computer-based numerical integration has facilitated continu-
ous ODE solutions to accommodate discrete events (e.g., har-
vest) and semidiscrete modeling approaches (e.g., R package
deSolve Soetaert et al. 2010).
We developed semidiscrete biomass dynamics models

(SDBDMs) to evaluate the consequences of assuming contin-
uous harvest when harvest was occurring discretely by fitting

CBDMs and SDBDMs to a simulated common carp stock.
We simulated fishery yield for 9999 years for CBDMs and
SDBDMs to compare yield in year 10 000 (i.e., approximate
equilibrium, year to year equilibrium) and biological refer-
ence points at varying levels of F. Consequences of estimated
parameter bias on biological reference points were evaluated
by comparing biological reference points calculated from pa-
rameter estimates for CBDMs with numerically derived refer-
ence points from the equilibrium analysis. Specific objectives
of this study were to (i) develop semidiscrete BDMs (i.e., ex-
ponential, Schaefer, Fox, Pella–Tomlinson, Schaefer model
with an index of biomass and catch per unit effort), (ii) evalu-
ate differences in equilibrium yield and biological reference
points between continuous and semidiscrete Schaefer, Fox,
and Pella–Tomlinson BDMs, (iii) evaluate how assuming
continuous harvest when it was actually discrete biases pa-
rameter estimates of BDMs, and (iv) evaluate consequences
of incorrectly assuming continuous harvest on biological
reference points (i.e., MSY, FMSY, BMSY) when harvest is in
fact discrete.

Materials and methods

BDMs
Five CBDMs were extended to accommodate discrete

commercial fishery harvest (Table 1). The simplest was an
exponential model that is used in cases of introduced species
or where sufficiently long time series of biomass observa-
tions are not available to fit more complex models. Schaefer,
Fox, and Pella–Tomlinson models, used in systems where a
carrying capacity parameter (Bmax) limits production, were
also used. A Schaefer model including an additional index of
biomass, catch per unit effort (CPUE), was also developed
(hereafter SchaeferCPUE). Continuous models are presented as
ODEs of the general form dB(t)/dt = f[B(t)] – F·B(t), where
dB(t)/dt is the change in biomass (kg·ha–1) over the time step

Table 1. Continuous and semidiscrete biomass dynamics models used in this paper.

Model Continuous Semidiscrete
Exponential dBðtÞ

dt
¼ rnBðtÞ � CCðtÞ dBðtÞ

dt
¼ rnBðtÞ; t 6¼ tk

Bðtþk Þ ¼ BðtkÞ � DCðtkÞ; t ¼ tk

9=
;

Schaefer dBðtÞ
dt

¼ rnBðtÞn Bmax �BðtÞ
Bmax

h i
� CCðtÞ dBðtÞ

dt
¼ rnBðtÞn Bmax � BðtÞ

Bmax

� �
; t 6¼ tk

Bðtþk Þ ¼ BðtkÞ � DCðtkÞ; t ¼ tk

9>=
>;

Fox dBðtÞ
dt

¼ rnBðtÞn 1� log e
BðtÞ
Bmax

h i
� CCðtÞ dBðtÞ

dt
¼ rnBðtÞn 1� log e

BðtÞ
Bmax

� �
; t 6¼ tk

Bðtþk Þ ¼ BðtkÞ � DCðtkÞ; t ¼ tk

9>=
>;

Pella–Tomlinsona dBðtÞ
dt

¼ r
p
nBðtÞn 1� BðtÞ

Bmax

h ip�1

� CCðtÞ dBðtÞ
dt

¼ r

p
nBðtÞn 1� BðtÞ

Bmax

� �p�1

; t 6¼ tk

Bðtþk Þ ¼ BðtkÞ � DCðtkÞ; t ¼ tk

9>=
>;

SchaeferCPUE dBðtÞ
dt

¼ rnBðtÞn Bmax �BðtÞ
Bmax

h i
� CCðtÞ dBðtÞ

dt
¼ rnBðtÞn Bmax � BðtÞ

Bmax

� �
; t 6¼ tk

Bðtþk Þ ¼ BðtkÞ � DCðtkÞ; t ¼ tk

9>=
>;

I(t) = q·B(t) I(t) = q·B(t)
aThe term r/p is eliminated when p = 0.
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dt, f[B(t)] is the function relating production to biomass at
time t less the instantaneous rate of fishing mortality (F;
year–1) times biomass at time t (B(t); kg·ha–1) (Table 1).
However, SDBDMs are presented as the base ODE in the
form dB(t)/dt = f[B(t)] and an additional equation accounting
for losses due to pulsed harvest occurring at discrete times.
Semidiscrete model notation used in this paper is based on
Mailleret and Lemesle (2009) and Zhang et al. (2006).
(CBDMs and SDBDMs used in these analyses are detailed
in Table 1, and an explanation of symbols is in Table 2.)

Solving BDMs
Numerical integration was required to solve CBDMs and

SDBDMs for given values of rates (r), parameters (Bmax, p),
scalars (q), and initial biomass (B0). Among numerical inte-
grators (e.g., Euler, Runge–Kutta), the Livermore integration
routine is the most accurate (Stevens 2009) and was used to
solve BDMs in this study. Numerical integration was per-
formed using the deSolve package (Soetaert and Herman
2009; Soetaert et al. 2010) for the R program (R Develop-
ment Core Team 2010). Values of initial biomass (B0),
rates (r), scalars (q), and parameters (Bmax, p) are required to
solve the ODEs by numerical integration, and values used in
all subsequent analyses will be presented in the following
sections.

A hypothetical common carp stock
A hypothetical stock of common carp was simulated to

evaluate CBDMs and SDBDMs, based on a real stock of
common carp in Clear Lake, Iowa, undergoing discrete com-
mercial harvest (Colvin et al. 2010). Clear Lake has sup-
ported a commercial fishery for nuisance common carp since
the early 1930s (Bailey and Harrison 1945). Dates and
amounts of commercial fishery harvest have been reported
since 1980. Harvest amounts have varied from 0.1 to
51 kg·ha–1 during spring and 0 to 19 kg·ha–1 during fall
events. Identification of common carp aggregation areas in

space and time by Penne and Pierce (2008) has increased
harvest and reduced the number of within-year harvests over
the past 4 years. Therefore, data from 2007 to 2010 were
used to set up harvest timing and amount of commercial har-
vest in this simulation study. Annual commercial common
carp harvest averaged 35.6 kg·ha–1 (minimum = 8.8 kg·ha–1,
maximum = 58.1 kg·ha–1), with an average of 86% (mini-
mum = 4%, maximum = 91%) occurring in the spring and
14% (minimum = 8%, maximum = 95%) of harvest occur-
ring in fall. In both seasons, harvest occurred over short peri-
ods of time (<5 days). Timing of actual harvest was used to
establish temporal harvest structure for simulations and sub-
sequent analyses. Simulated spring and fall harvest events oc-
curred every 0.2 and 0.8 years, respectively. In semidiscrete
model notation, time of harvest is represented by tk, where k
indexes when harvest occurred (i.e., tk ∈ {0.2, 0.8, 1.2, 1.8,
…, 9.2, 9.8}). In simulations, 86% of harvest occurred in the
spring and 14% during the fall.
Values for r, Bmax, p, and q were selected to generate hy-

pothetical common carp biomass dynamics similar to the real
population in Clear Lake. Common carp biomass in Clear
Lake between 1999 and 2010 varied from 124 to
540 kg·ha–1 (Larscheid 2005; Colvin et al. 2010), therefore,
a midrange value of 300 kg·ha–1 was used to approximate
average maximum biomass (Bmax). Preliminary estimates of
intrinsic growth rate (r) and catchability (q) of the Clear
Lake common carp stock are approximately 0.3 and 0.07
(M. Colvin, unpublished data), respectively, and were used
in all models containing parameters r and q. A value of 1.3
for p in the Pella–Tomlinson model was arbitrarily selected
to cause peak surplus production to occur at a biomass less
than half Bmax. A value of 115 kg·ha–1 was used for B0 in
the exponential model, and 300 kg·ha–1 was the value of B0
in all other models. The same values for B0, Bmax, r, p, and
q were used for subsequent equilibrium yield analysis and to
generate biomass dynamics for the hypothetical carp stock
undergoing discrete harvest.

Equilibrium yield analysis
An equilibrium analysis was performed to compare the re-

lationship of fishing mortality (F) to equilibrium fishing yield
for continuous and semidiscrete Schaefer, Fox, and Pella–
Tomlinson models. Analysis was limited to BDMs where a
dome-shaped relationship of yield and fishing mortality ex-
ists. Equilibrium fishery yields of continuous and semidis-
crete Schaefer and Pella–Tomlinson BDMs for F ranging
from 0 to 0.30 by 0.01 increments were calculated by run-
ning each scenario until equilibrium was reached. Since
FMSY occurs at the value of r for the Fox model (Cadima
2003), equilibrium yields were evaluated for F ranging from
0 to 1.4. In SDBDMs, F occurred every 0.2 (86% of F) and
0.8 years (14% of F), simulating previously described sea-
sonal commercial harvests in Clear Lake. The annual fishery
yield for year 9999 was related to annual F to evaluate differ-
ences in equilibrium yield between continuous and semidis-
crete Shaefer, Fox, and Pella–Tomlinson BDMs. Biological
reference points (MSY, BMSY, FMSY, F0.1) were calculated us-
ing equations in Cadima (2003) for CBDMs. A grid search
was used to find MSY, BMSY, and FMSY for SDBDMs. Ana-
lytical solutions for F0.1 are unavailable and therefore not cal-
culated.

Table 2. List of symbols, descriptions, and units.

Symbol Description
tþk Time when instantaneous harvest occurs (year)
t Continuous time (year)
tk Discrete time (year)
i Index of biomass observations
j Index of CPUE observations
k Index of events
l Index of model parameters
B(t) Biomass at time t (kg·ha–1)
I(t) Observed CPUE at time t (kg·effort–1)bIðtÞ Predicted CPUE at time (kg·effort–1)
y(t) Observed biomass at time t (kg·ha–1)byðtÞ Predicted biomass at time t (kg·ha–1)
CC(t) Continuous catch at time t (kg·ha–1·year–1)
DC(tk) Discrete catch at harvest event tk (kg·ha–1)
r Intrinsic growth rate (kg·ha–1·year –1)
Bmax Maximum biomass (kg·ha–1)
q Catchability (kg·ha–1·effort–1)
p Asymmetry parameter (dimensionless)
F Fishing mortality (year–1)
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Parameter bias

Generating known biomass dynamics
The effect of assuming continuous harvest when it is ac-

tually discrete was assessed by fitting each CBDM and
SDBDM (Table 1) to a simulated common carp stock experi-
encing discrete harvest events. Underlying (true) biomass
time series were generated from each SDBDM using previ-
ously described parameter values and four values of F to cal-
culate amount of harvest (Cspring = 0.86F·B, Cfall = 0.14F·B).
The exponential model used F values equal to 0.5r, r, 1.5r,
and 1.75r. Values of F for remaining BDMs were calculated
as 0.5FMSY, FMSY, 1.5FMSY, and 1.75FMSY, where FMSY is
semidiscrete FMSY. Harvest amounts were calculated as
C(tk) = (gseason·F)·B(tk), where C(tk) is the harvested biomass
in kg·ha–1 at event tk, gseason is the fraction of annual fishing
mortality in a season, F is the annual fishing mortality, and
B(tk) is the biomass at the time of harvest event. Harvested
biomass was summed within year for CBDM inputs.

Simulating observations of biomass and CPUE
A Monte Carlo simulation was used to simulate time series

of biomass and CPUE observations that were fit to BDMs.
Biomass sampling occurred every 0.3 year (t = 0.3, 1.3, …,
9.3), mimicking the common practice of batch marking com-
mon carp captured during spring commercial fishing in Clear
Lake and returning those fish to the lake for mark–recapture
population estimates (Colvin et al. 2010). Observed CPUE
occurred every 0.7 year (t = 0.7, 1.7, …, 9.7), simulating
fall indexing of biomass by CPUE. For each generated bio-
mass time series (20 combinations in total, five models, four
values of F), 50 replicated time series of biomass observa-
tions (10 observations per time series) were simulated using
the equation y(t)i = B(t)·e3, where y(t)i is observed biomass
at time t, B(t) is biomass at sampling time t, and 3 is a ran-
dom, multiplicative, lognormally distributed observation-only
error with loge(mean) = 0 and constant coefficient of varia-

tion (CV). An additional 50 replicate time series of CPUE
(10 observations per time series) were generated for the
SchaeferCPUE BDM by I(t)j = q·B(t)·e3, where I(t)j is the ob-
served CPUE at time t, and q, B(t), and 3 are as previously
described. Only the SchaeferCPUE model was evaluated be-
cause of the common use of the model and to simplify the
analysis. The level of CV used in all analyses was 20% and
was selected to represent the level of certainty recommended
for management (Van Den Avyle and Hayward 1999).

Parameter estimation
CBDMs and SDBDMs were fit to each time series of bio-

mass estimates and CPUE to compare bias in parameter esti-
mates for increasing harvest. Harvest amount was
instantaneously removed in SDBDMs during model fitting.
Total annual harvest was continuously removed over the an-
nual period during model fitting for CBDMs. Model parame-
ters (e.g., r, Bmax, p, q) were estimated by maximum
likelihood assuming a multiplicative lognormal observation-
error structure (Polacheck et al. 1993; Hilborn and Mangel
1997; Walters and Martell 2004). Maximum likelihood esti-
mates of model parameters were found using the optim func-
tion in R to maximize the following log likelihood:

‘½qljyðtÞi� ¼
Xi

1
log e

1

yðtÞin
ffiffiffiffiffiffiffiffiffiffi
2ps2

y

q ne
� log ½yðtÞi =byðtÞi �

2s2y

n o0
B@

1
CA

2

where ql is the vector of model parameters (e.g., r, Bmax),
y(t)i is observed biomass at time t, byðtÞi is model-estimated
biomass at time t, and sy is the standard deviation of the
residuals. The previous log likelihood was used to find va-
lues of model parameters that maximize the log likelihood for
the exponential, Schaefer, Fox, and Pella–Tomlinson models.
To include CPUE (I), the log likelihood was modified to

‘½qljyðtÞi; IðtÞj� ¼
Xi

1
log e

1

yðtÞin
ffiffiffiffiffiffiffiffiffiffi
2ps2

y

q ne
� log ½yðtÞi =byðtÞi �

2s2y

n o0
B@

1
CA

2

þ
Xi

1
log e

1

IðtÞjn
ffiffiffiffiffiffiffiffiffiffi
2ps2

I

p ne
� log ½IðtÞj =bI ðtÞj �

2s2
I

� �0
B@

1
CA

2

where ql is the vector of model parameters (i.e., r, Bmax, q,
sy, sI), bIðtÞj is model-estimated CPUE at time t, sy, and sI
are standard deviations of biomass and CPUE residuals, re-
spectively. and y(t)i, byðtÞi, and I(t)j are as defined previously.
The initial biomass (B0) was constrained to be equal to Bmax
in models containing Bmax for estimation purposes. This con-
straint was used since it is possible for B0 to exceed Bmax in
numerical optimization (Prager 1994), and this constraint
performed well for estimating biological reference points
even when discrepancies in B0 and Bmax exist (Punt 1990).
Quasi-Newton (BFGS) nonlinear search algorithm was used
for all maximizations.
Parameter estimate bias was used to evaluate consequences

of applying discrete harvest continuously. Proportional pa-
rameter bias was calculated by subtracting the estimated pa-
rameter by the true parameter and dividing by the true

parameter used to generate the underlying true biomass dy-
namics for each BDM. A parameter was considered unbiased
if Monte Carlo replicates were centered on 0. Parameter bias
was graphically assessed.

Biological reference points

Consequences of assuming continuous fishing mortality on
biological reference points were evaluated by comparing
reference points derived from CBDMs with true values used
to generate hypothetical common carp stock biomass dynam-
ics. Biological reference points were calculated from maxi-
mum likelihood estimates for parameters of continuous
Schaefer, Fox, Pella–Tomlinson, and SchaeferCPUE BDMs us-
ing equations in Cadima (2003). Proportional bias of biolog-
ical reference points were calculated as ðbq � qÞ=q, where q is
the true biological reference point from the equilibrium anal-
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ysis, and bq is the biological reference point calculated from
estimated parameters for CBDMs. A parameter was consid-
ered unbiased if Monte Carlo replicates were centered on 0.
Bias of biological reference points was graphically assessed.

Results

Equilibrium yield
Equilibrium yield results of continuous and semidiscrete

Schaefer, Fox, and Pella–Tomlinson BDMs provided differ-
ent biological reference points despite sharing the same an-
nual fishing mortality and parameter values (Fig. 2;
Table 3). Equilibrium yields for CBDMs and SDBDMs were
similar at low levels of F and became increasingly divergent
as F approached and exceeded FMSY (Fig. 2). Equilibrium
yield at high levels of F (F ≫ FMSY) was reduced for
SDBDMs relative to CBDMs (Fig. 2). FMSY was slightly re-
duced when F occurred discretely compared with continuous

Fig. 2. Equilibrium fishing yield over a range of fishing mortalities for continuous (broken line) and semidiscrete (solid line) Schaefer (a),
Fox (b), and Pella–Tomlinson (c) biomass dynamics models.
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application of F for all three BDMs (Table 3). MSY and
BMSY were slightly higher when F was applied discretely rel-
ative to continuous application.

Parameter bias
Proportional bias varied with harvest amount and type of

BDM. Median absolute parameter bias was within ±0.1 for
the majority of parameters estimated by semidiscrete expo-
nential, Schaefer, Fox, and SchaeferCPUE BDMs (Figs. 3 and
4). Exceptions were negative biases in estimates of r and
Bmax in semidiscrete Schaefer and SchaeferCPUE models. Neg-
ative bias increased for r and B0 with increasing harvest for
the continuous exponential model (Fig. 3). Median parameter
bias of CBDMs was minimized at low values of F (Figs. 3
and 4). The magnitude of median parameter bias (negative
or positive) increased with F for continuous exponential,
Schaefer, Fox, and SchaeferCPUE. Median bias of q was less
than 0.1 but increased systematically with F. Median bias of
r did not exhibit systematic pattern for either continuous or
semidiscrete Pella–Tomlinson models. Bmax was unbiased
(|median bias| < 0.1) at low levels of F for continuous and
all levels of F for semidiscrete Pella–Tomlinson BDM. Both
continuous and semidiscrete Pella–Tomlinson BDMs over-
estimated p, but this bias was minimized at low F levels.

Biological reference points
Proportional bias of biological reference points varied with

F and among CBDMs (Fig. 5). Negative median proportional
bias of BMSY and MSY increased with increasing F for all
CBDMs. Bias of FMSY did not vary systematically with F,
but the range of proportional bias declined with increasing F.

Discussion
Results of our analyses demonstrate that assuming continu-

ous fishing mortality when it is occurring discretely has po-
tential management consequences. The SDBDMs we
evaluated reduced parameter estimate bias at high values of
F relative to CBDMs for stocks experiencing discrete harvest.
Additional biological realism provided by SDBDMs did not
come at the expense of greater computer time required to fit
models. Maximum likelihood solutions were achieved for
both continuous and semidiscrete BDMs in less than 2–
3 min for even the most complex models. Explicitly account-
ing for discrete harvest structure (date and amount) using
SDBDMs outperformed CBDMs when F approaches and ex-
ceeds FMSY. It should be noted that SDBDMs are not more
complex in terms of number of parameters, but add biologi-
cal realism by explicitly accounting for amount and timing of
biomass harvest. Knowing when and how much biomass is

removed imposes an informative physical constraint when fit-
ting models to time series, since a stock must have sufficient
biomass and production to support discrete harvest events
(i.e., discrete harvest must be less than standing biomass).
Equilibrium analysis of the Schaefer, Fox, and Pella–

Tomlinson BDMs provided insight into differences in effect
of fishing mortality on equilibrium yield in continuous and
discrete fishing systems. Under low values of F, the differen-
ces between CBDMs and SDBDMs were negligible, indicat-
ing that use of either model type would yield similar
management results. Equilibrium yield at F approaching or
greater than FMSY were increasingly different between
CBDMs and SDBDMs, indicating that applying harvest con-
tinuously when it is actually discrete can influence manage-
ment recommendations. Equilibrium yield predicted for high
levels of F (i.e., greater than FMSY) was lower for SDBDMs,
which could have management consequences when a fish
stock is experiencing heavy discrete harvest but harvest is
modeled continuously in BDMs. Production over an annual
period is less when discrete harvest reduces biomass levels
over a short period, since production is dependent on bio-
mass. In other words, biomass is reduced by a discrete har-
vest and the population cannot “catch up” and equal
production of a population where the same amount of bio-
mass is continuously harvested. Applying F continuously
when it occurs discretely overestimated equilibrium yield at
high values of F based on our equilibrium analyses. Over-
estimating equilibrium yield is obviously problematic for
managing sustainable fisheries and is potentially part of the
reason for the long-standing discontent with MSY as a bio-
logical reference point for managing fish stocks (Larkin
1977; Punt and Smith 2001). Harvest objectives identified
using equilibrium approximations of continuous biomass dy-
namics models should result in overharvest if harvests are
satisfied using discrete commercial fishing efforts. Overesti-
mating sustained yield is not necessarily a problem with nui-
sance commercial fisheries, where the objective is to overfish
a stock to reduce biomass-dependent impacts.
FMSY was slightly lower when fishing effort was modeled

as discrete events rather than on a continuous basis. This re-
sult was observed for all BDMs exhibiting a dome-shaped re-
lationship of equilibrium yield and F used in this study. These
discrepancies in FMSY between CBDMs and SDBDMs are no-
table in providing a potential basis for use of F0.1 as a biolog-
ical reference point. The use of F0.1 has emerged as a useful
“rule of thumb” for managing fisheries, but according to Hil-
born and Walters (1992) this is an arbitrary, ad hoc strategy
with no theoretical basis. It is unlikely that fishery harvest is
truly continuous over an annual period, so reducing FMSY cal-

Table 3. Biological reference points for CBDMs and SDBDMs.

Model Model type MSY BMSY FMSY F0.1

Schaefer Continuous 22.50 150.0 0.150 0.136
Semidiscrete 22.42 151.3 0.142

Fox Continuous 33.11 110.5 0.300 0.236
Semidiscrete 32.88 112.8 0.267

Pella–Tomlinson Continuous 20.62 158.1 0.130 0.120
Semidiscrete 20.56 159.2 0.124

Note: Values of F0.1 for SDBMs are not available and therefore not calculated.
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culated from CDBDM parameter estimates compensates for
violating the assumption of continuous fishing mortality.
Time series are the recommended method for fitting

BDMs (Hilborn and Walters 1992). Accurate estimates of pa-
rameters such as r and Bmax based on time series are critical
for establishing biological reference points used to manage
fish stocks using output controls (e.g., total allowable catch).
Bias in parameter estimates can result in biased estimates of

MSY and FMSY, potentially leading to stock mismanagement.
On average, parameter bias was negative for most biological
reference points, which indicates that reference points may be
conservative when fishing harvest is applied discretely but
modeled continuously because of underestimating Bmax. Pa-
rameter bias in CBDMs was dependent on how much bio-
mass was harvested. In particular, bias in Bmax was
consistently more severe at higher harvest levels among all
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Fig. 3. Boxplots of proportional bias for parameters estimated for exponential (r, panel (a); B0, panel (b)), Schaefer (r, panel (c); Bmax, pa-
nel (d)), and Fox (r, panel (e); Bmax, panel (f)) CBDMs (no shade) and SDBDMs (shaded). The solid horizontal line in the boxes represents
the medians. Boxes represent the bounds of the 25th and 75th quartiles of the data. Whiskers represent the lower and upper bounds of the
data. The horizontal dotted line denotes a proportional bias value of zero.
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CBDMs. In hypothetical biomass dynamics of SDBDMs,
biomass is instantaneously reduced then increases thereafter.
Failure to incorporate information on magnitude or timing of
large biomass harvests in relation to biomass observation re-
sults in negative bias in Bmax in CBDMs. It should be noted
that neither CBDMs nor SDBDMs did a good job of estimat-
ing model parameters for the Pella–Tomlinson model, where
fitting an additional parameter (four parameters in total) rela-
tive to the other models resulted in poor fits and the possibil-
ity that additional data or reparameterizing may be required.
Fishery harvest dynamics likely exhibit a combination of

discrete and continuous fishing mortality. For example, an
“opening day” phenomenon can occur when a recreational
or commercial fishery opens resulting in eager fishers and
greater fishing mortality during the opening day compared
with the remaining season. Greater fishing mortality likely
occurs on opening day since the amount of fishing effort is
high owing to the number of casual (i.e., only fish opening
day) fishers exploiting vulnerable fish over a short period of
time. It is likely that after opening day, fishing effort is domi-
nated by serious fishers. For example, commercial harvest of
Caribbean spiny lobster (Panulirus argus) fisheries of Bahia
de la Ascension, Mexico, was found to be greatest on open-

ing day and subsequently decreased over time (Lozanoalvarez
et al. 1991). In an inland recreational fishery, the majority of
fish were harvested during the first 2 days of opening on a
previously unfished lake in Wisconsin (Goedde and Coble
1981). Events such as free fishing days and tournaments
could be viewed as discrete harvest events because of angler
behavior that occurs in addition to ongoing licensed recrea-
tional fishing (i.e., continuous harvest). Overfishing may re-
sult if discrete fishing mortality events are not accounted for
in assessments of recreational fisheries because of overesti-
mation of harvest when F exceeds FMSY. SDBDMs accom-
modate the potential for biomass dynamics to be modeled as
a mixture of discrete and continuous harvest and therefore
may provide a more realistic and accurate stock assessment.
Discrete events influencing aquatic animal biomass fre-

quently occur in aquatic systems. One example is the stock-
ing of fish into aquatic systems to serve as biological
controls (Lathrop et al. 2002), provide additional fishing op-
portunities (Pine et al. 2007), or promote species conserva-
tion (Oosterhout et al. 2005). This discrete input of fish
biomass can have major food web impacts through an instan-
taneous increase in the consumption required to support these
newly stocked fish. For example, Pope et al. (2009) found
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Fig. 4. Boxplots of proportional bias for parameters estimated for Pella–Tomlinson (r, panel (a); Bmax, panel (b); p, panel (c)) and
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that trout stocked in alpine lakes altered the alpine lake eco-
system by preying on emerging insects that would otherwise
be a terrestrial subsidy. SDBDMs could be used to more real-
istically explore the consequences of stocking timing and
amount on prey dynamics in food web and ecosystem models.
Our analysis shows that the use of semidiscrete models to

represent discrete phenomena such as pulsed harvest within
the context of continuous mortality and other population
processes can have important management implications. Dis-
crete phenomena can result in complex population dynamics
that continuous models may not adequately represent. Peri-
odic (i.e., seasonal, disturbance) mortality events can have a
major influence on population dynamics. For example, large

snow events can cause mortality in ring-necked pheasant
hens (Phasianus colchicus; Perkins et al. 1997) or high flow
events can cause mortality in juvenile coho salmon (Onco-
rhynchus kisutch; Ebersole et al. 2006). Winter- and
summer-fish kills where large mortality occurs over a short
period of time owing to decreased dissolved oxygen levels
(Hurst 2007) could be accommodated in BDMs as discrete
events. Biomanipulation is a common restoration technique
to restore water quality (e.g., Schrage and Downing 2004),
and removal of common carp by rotenone would be more
realistically modeled using SDBDMs than CBDMs. Other
disturbances such as reproductive failure within a year (e.g.,
Carlander 1958) or disease epidemics represent discrete
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events that could have large influences on biomass dynamics
over short periods of time. Additionally, conservation and
supplementation stocking can be discrete efforts occurring
for a number of aquatic and terrestrial species. The present
study focuses on a nuisance population of common carp as
an example; however, this approach could also be applied to
pest suppression occurring in agroecosystems (i.e., predator
releases, pesticides) (Lu et al. 2003; Nundloll et al. 2010).
Accounting for these events occurring over a short period of
time relative to the annual period using semidiscrete models
can potentially improve understanding and management of
population dynamics in a variety of systems and circumstan-
ces.
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