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Abstract
Fish and habitat data were collected from 84 wadeable stream reaches in the Mississippi River drainage of Iowa

to predict the occurrences of seven fish species of greatest conservation need and to identify the relative importance
of habitat variables measured at small (e.g., depth, velocity, and substrate) and large (e.g., stream order, elevation,
and gradient) scales in terms of their influence on species occurrences. Multiple logistic regression analysis was used
to predict fish species occurrences, starting with all possible combinations of variables (5 large-scale variables, 13
small-scale variables, and all 18 variables) but limiting the final models to a maximum of five variables. Akaike’s
information criterion was used to rank candidate models, weight model parameters, and calculate model-averaged
predictions. On average, the correct classification rate (CCR = 80%) and Cohen’s kappa (κ = 0.59) were greatest for
multiple-scale models (i.e., those including both large-scale and small-scale variables), intermediate for small-scale
models (CCR = 75%; κ = 0.49), and lowest for large-scale models (CCR = 73%; κ = 0.44). The occurrence of
each species was associated with a unique combination of large-scale and small-scale variables. Our results support
the necessity of understanding factors that constrain the distribution of fishes across spatial scales to ensure that
management decisions and actions occur at the appropriate scale.

Conservation of freshwater ecosystems is an important goal
of resource managers and an understanding of species distribu-
tions and habitat requirements greatly increases the probability
of successful ecosystem restoration and preservation. Further-
more, an understanding of species–habitat relationships can
provide insight into the effects of land use practices, habitat
alterations, and climate change on species distributions (Wang
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et al. 2003; Wall et al. 2004; Lyons et al. 2010). Modeling of
species distributions is an important tool for addressing many
issues in conservation (Guisan and Thuiller 2005), and the use
of predictive occurrence models to further the understanding
of fish species’ relationships with habitat features in freshwater
systems is common (e.g., Olden and Jackson 2001; Rich et al.
2003; Steen et al. 2008). As habitat loss and degradation
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continue to threaten fish biodiversity in North America (Miller
et al. 1989; Richter et al. 1997; Jelks et al. 2008), species
distribution models are playing an increasingly important role
in conservation. However, predicting the distribution of fish
species is challenging because fish species occurrences are
influenced by a combination of abiotic and biotic processes
acting across multiple spatial and temporal scales (Poff 1997;
Marsh-Matthews and Matthews 2000; Jackson et al. 2001). A
further challenge is that the most influential processes vary by
species and system (Pont et al. 2005; Monti and Legendre 2009).

The link between landscapes and aquatic ecosystems has
been appreciated for decades (Hynes 1975; Vannote et al. 1980;
Allan 2004), and the relationships between processes acting
at larger scales and habitats and biota at smaller scales are of
great interest to aquatic ecologists (Richards et al. 1996; Wang
et al. 2003; Hughes et al. 2006). Habitat variables measured
at large scales are often able to explain substantial variation
in fish assemblages, particularly in highly variable landscapes
(e.g., Rocky Mountain streams; Rahel and Hubert 1991) or
across large spatial scales (e.g., entire midwestern USA; Marsh-
Matthews and Matthews 2000). Additionally, the modeling of
species occurrences with large-scale habitat variables is eco-
nomical because such variables are easily measured with a GIS,
thereby reducing the need for costly field sampling (Oakes et al.
2005; Steen et al. 2008). However, in other regions, large-scale
habitat variables such as land use may not effectively explain
variation in fish assemblage structure (Rich et al. 2003; Heitke
et al. 2006) or may only do so indirectly (Rowe et al. 2009a).

Relationships between fish assemblages and environmental
features measured at small scales are also well documented
(Gorman and Karr 1978; Schlosser 1982; Lobb and Orth 1991).
The influence of instream physical habitat features (e.g., depth
and substrate composition) on food, refuge, and spawning
habitat availability is easy to conceptualize, and their influence
on fish assemblages is well studied (Fischer and Paukert 2008;
Rowe et al. 2009b). Thus, many studies have used instream
habitat variables to explain the distribution or abundance of
fish species (e.g., Hubert and Rahel 1989; Quist et al. 2005;
Rashleigh et al. 2005). Furthermore, an understanding of the
constraints on fish species occurrences measured at small
scales (e.g., canopy cover) may be most useful for conservation
efforts because small-scale characteristics can be more easily
manipulated for restoration than landscape-level features (e.g.,
elevation).

Identification of the factors and spatial scales influencing fish
species occurrences remains a central focus of fisheries ecolo-
gists (e.g., Porter et al. 2000; Rich et al. 2003; Pont et al. 2005).
Biotic communities are influenced by a hierarchical system of
constraints in which large-scale processes constrain smaller-
scale processes (Tonn 1990; Poff 1997; Quist et al. 2005).
This is especially evident for stream habitats, which are hi-
erarchically organized within catchments, segments, reaches,
macrohabitats, and microhabitats (Frissel et al. 1986). Thus,
species occurrence models that account for effects measured at
multiple spatial scales may provide more predictive power and

transferability than models that incorporate variables measured
at a single spatial scale (Leftwich et al. 1997; Rich et al. 2003;
Pont et al. 2005).

In Iowa, 68 of approximately 144 extant fish species are
classified as species of greatest conservation need (SGCN), and
the protection and enhancement of habitats to improve their
status are of high priority (Zohrer 2005). Fifty percent of the
fish SGCN examined by Sindt et al. (2012) were found to have
declining distributions. Despite concern regarding their conser-
vation status, the habitat associations of SGCN and most other
Iowa stream fish species are poorly understood. Therefore, an
understanding of factors influencing the occurrences of stream
fish SGCN at multiple spatial scales is important for guiding
the conservation of these species (Lewis et al. 1996; Rabeni and
Sowa 1996; Durance et al. 2006; Dunham and Peterson 2010).

Our objectives were to (1) identify important large-scale and
small-scale habitat features that influence the occurrence of each
fish SGCN; (2) predict the occurrences of fish SGCN by using
habitat variables measured at a large scale, a small scale, and
both scales (i.e., multiple-scale variables); and (3) evaluate the
relative influence of large-scale and small-scale habitat variables
on fish species occurrences. Furthermore, because inaccurate
species distribution models may be detrimental to conservation
efforts, models were validated by using an independent data set
to gauge confidence in model predictions and test model gener-
ality. We expected that (1) the habitat features with the greatest
influence on species occurrence would vary among species due
to species-specific habitat associations and (2) species occur-
rence models that included habitat variables measured at multi-
ple spatial scales would explain the most variability in species
occurrence and would exhibit the greatest model generality.

METHODS
Study area and field sampling.—Fish assemblages and small-

scale physical habitat characteristics were sampled from 84
wadeable (i.e., second through fifth order) Iowa stream reaches
during the spring and summer (May–August) of 2009 and 2010
(Figure 1). Rather than using a simple random sampling design,
stream reaches were selected to maximize the number of reaches
sampled for each SGCN in three stream segment categories for
a concurrent study (Sindt et al. 2012). The three stream segment
categories within each species’ respective distribution included
(1) previously sampled stream segments where the species was
documented to be present within the last 50 years (i.e., since
1958); (2) stream segments that had not been previously sam-
pled but where the species was predicted to be present by an
existing species distribution model (Iowa Aquatic Gap Analysis
Project; Loan-Wilsey et al. 2005); and (3) stream segments that
had not been previously sampled and where the species was
not predicted to be present. Sixty-eight Iowa fish species are
classified as SGCN, and knowledge about habitat associations
for all SGCN is needed to guide conservation efforts (Zohrer
2005). However, only seven species were present in a sufficient
number of the 84 sampled stream reaches to allow for modeling:
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1048 SINDT ET AL.

FIGURE 1. Locations of 84 wadeable (second through fifth order) stream reaches sampled in the Mississippi River drainage of Iowa during spring and summer
(May–August) 2009 and 2010.

the banded darter Etheostoma zonale, American brook lamprey
Lampetra appendix, Ozark minnow Notropis nubilus, blackside
darter Percina maculata, southern redbelly dace Phoxinus ery-
throgaster, longnose dace Rhinichthys cataractae, and central
mudminnow Umbra limi.

All sampled stream reaches were located in the Missis-
sippi River drainage of Iowa, which contains 34 eight-digit
hydrologic unit code (HUC) watersheds (HUCs designated by
the U.S. Geological Survey) and portions of seven ecoregions
(Des Moines Lobe, Loess Hills and Steeply Rolling Prairies,
Southern Iowa Rolling Loess Prairies, Central Irregular Plains,
Iowan Surface, Paleozoic Plateau, and Interior River Lowland;
Griffith et al. 1994). The 84 stream reaches were sampled from
18 watersheds and included reaches from the Iowan Surface (n =
47 reaches), Des Moines Lobe (n = 15), Southern Iowa Rolling
Loess Prairies (n = 14), and Paleozoic Plateau (n = 8) ecore-
gions. Stream reaches were also sampled from both of Iowa’s
aquatic subregions (i.e., Eastern Broadleaf Forest and Central
Plains), which have unique physiographic characteristics and

riverine assemblages (Sowa et al. 2004). Aquatic subregions are
similar to the ecoregion provinces defined by Bailey (1995),
but the boundaries were delineated by the Missouri Resource
Assessment Partnership (University of Missouri, Columbia) to
align with drainage divides. Twenty-one of the sampled stream
reaches were in the Central Plains aquatic subregion, which is
characterized by thick loess deposits over flat to gently sloping
terrain with wide stream valleys. Many Central Plains streams
were historically dominated by fine silt and sand substrates,
and sediment input has been exacerbated by the conversion of
native prairie to cropland. The other 63 stream reaches were
sampled in the Eastern Broadleaf Forest aquatic subregion of
northeastern Iowa; this aquatic subregion is also highly altered
from agricultural practices but is geologically more diverse than
the Central Plains subregion. The Eastern Broadleaf Forest con-
tains the Paleozoic Plateau ecoregion, which was less impacted
by glaciation and is characterized by high topographic relief,
rocky outcroppings, and dense forests (Griffith et al. 1994).
Overall, Iowa’s landscape is relatively homogeneous, with
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HABITAT ASSOCIATIONS OF IOWA FISHES 1049

elevation only varying from 146 to 509 m, and 72% of the land
has been converted to row crop agriculture (U.S. Department
of Agriculture 2007). Previous studies have found increasing
aquatic ecological integrity (e.g., index of biotic integrity) from
southwest Iowa to northeast Iowa (Wilton 2004; Heitke et al.
2006). Greater ecological integrity in northeast Iowa is likely
a reflection of relatively high-quality habitat due to the greater
topographic relief, less-disturbed riparian habitats, and coarser
substrates than in other regions of Iowa.

Sample reaches were 300–400 m in length and were divided
into macrohabitat units (riffles, pools, runs, or off-channel units).
When feasible, sample reaches were selected to encompass as
many different macrohabitat units as possible and to be more
than 100 m from an artificial structure (e.g., a bridge or low-head
dam). All sampling occurred during base flow conditions to min-
imize sampling inefficiencies associated with high flow, depth,
and turbidity. Fish assemblages were sampled in each macrohab-
itat separately by using single-pass upstream electrofishing with
a pulsed-DC electrofishing unit (Simonson and Lyons 1995).
When feasible, a generator-powered, barge-mounted elec-
trofishing unit with three anodes (Model VVP-15B; Smith-Root,
Inc., Vancouver, Washington) was used. However, if streams
were too shallow or were inaccessible, a battery-powered back-
pack electrofishing unit (Smith-Root LR-20) was used. For both
backpack and barge-mounted electrofishing, three netters used
6.34-mm-mesh dip nets to collect fish. An effort was made
to sample all accessible habitat types in each macrohabitat.
Voltage output was adjusted to maximize efficiency and re-
duce incidental mortality in each sample reach. Fish that were
collected in each macrohabitat unit were examined for ex-
ternal abnormalities, identified, counted, and released. Up to
five voucher specimens of each SGCN were preserved in a
10% solution of formalin. Fish that could not be identified in
the field were preserved and transported to the laboratory for
identification.

Habitat characteristics were quantified by measuring phys-
ical habitat features in each macrohabitat unit. The length of
each macrohabitat unit was measured along the thalweg, and
the width of each macrohabitat unit was measured along a tran-
sect perpendicular to the thalweg at 25, 50, and 75% of the
macrohabitat length. Depth, current velocity, and substrate size
were measured at 20, 40, 50, 60, and 80% of the length of
each transect. Current velocity was measured with a portable
velocity meter (Flo-Mate Model 2000; Marsh-McBirney, Inc.,
Frederick, Maryland) at 60% of the depth when depth was less
than 0.75 m; at depths greater than 0.75 m, velocities were mea-
sured at 20% and 80% of the depth and the two values were
averaged (Buchanan and Somers 1969). Substrate was classi-
fied as artificial (e.g., tire), soil, wood (e.g., submerged tree),
detritus, hardpan, clay (<0.004 mm), silt (0.004–0.063 mm),
sand (0.062–2.000 mm), gravel (2–16 mm), coarse gravel (16–
64 mm), cobble (64–256 mm), boulder (>256 mm), or bedrock
(i.e., modified Wentworth scale). Canopy cover was measured
along each transect by using a spherical densiometer (1) at

and facing each streambank and (2) facing upstream and down-
stream at the midpoint of the transect. Bank cover characteristics
(percent coverage of woody vegetation, nonwoody vegetation,
roots, boulders, eroding ground, and bare ground) and distance
to anthropogenic disturbance (on the bank, ≤10 m from the
bank, >10 m from the bank, or absent) were visually estimated
for the left and right banks of each transect. One length measure-
ment, three width measurements, and three depth measurements
were recorded for each unit of instream cover (artificial struc-
ture, boulder, rip-rap, filamentous algae, aquatic macrophytes,
terrestrial vegetation, overhanging vegetation, undercut bank,
island, small brush, tree root, and large woody debris) at least
0.3 m in length within each macrohabitat.

The area of each macrohabitat unit was estimated by multi-
plying the thalweg length by the mean width. Mean depth, width,
current velocity, canopy cover, and bank coverage percentages
were calculated for each macrohabitat unit. Additionally, the
CV in depth, width, current velocity, and canopy cover was cal-
culated (CV = 100 × [SD/mean]). The proportions of each
substrate type and distance to disturbance category were also
quantified for each macrohabitat unit. All habitat characteristics
(except instream cover, which was censused and not estimated)
were averaged for each macrohabitat category (riffle, pool, run,
and off-channel) within each stream reach. Furthermore, aver-
aged values were weighted by the proportion of the total stream
reach area that was represented by the respective macrohabi-
tat category. Weighted values were summed to quantify habitat
characteristics for the entire stream reach. Aerial coverage of
each instream cover type was quantified as the proportion of
reach area. Additional composite variables were created by sum-
ming two or more habitat variables (e.g., proportion of coarse
substrates).

Independent variables.—Large-scale and small-scale habitat
variables characterizing sampled stream reaches were selected
as independent variables for SGCN occurrence models. Six-
teen GIS-measured variables that were used to develop fish
distribution models for the Iowa Aquatic Gap Analysis Project
(Loan-Wilsey et al. 2005) were obtained using ArcMap ver-
sion 9.3 (Environmental Systems Research Institute, Redlands,
California) and were considered candidate large-scale variables.
The 16 variables included one or more measures of flow (in-
termittent or permanent), stream order (Strahler 1957), chan-
nel gradient, elevation, soil type, aquatic subregion (Eastern
Broadleaf Forest or Central Plains), temperature (coldwater or
warmwater), and size discrepancy with downstream segment.
The temperature variable was derived from the Iowa Department
of Natural Resources’ coldwater streams designation, which is
based on biotic communities and maximum summer temper-
atures. Candidate small-scale habitat variables characterizing
channel morphology (e.g., width, depth, and macrohabitat com-
position), current velocity, canopy cover, bank cover, substrate
composition, instream cover (e.g., woody debris and boulders),
and distance to disturbance (e.g., row crop agriculture, pasture,
and road) were obtained from field sampling.
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1050 SINDT ET AL.

TABLE 1. Large-scale and small-scale habitat variables for 84 wadeable Iowa stream reaches that were sampled during spring and summer 2009 and 2010;
these variables were used as independent variables in fish species occurrence models (min = minimum; max = maximum).

Variable Description Mean SD Min Max

Large-scale variables
Temperature Factor (1 = coldwater; 2 = warmwater) 1.93 0.26 1.00 2.00
Subregion Factor (1 = Central Plains; 2 = Eastern Broadleaf Forest) 1.75 0.44 1.00 2.00
Order Strahler stream order 3.11 0.76 2.00 5.00
Elevation Elevation (m) of the upstream end of the stream segment 295.27 45.43 189.00 387.00
Gradient Measure of reach gradient (1 = 0.0–0.4 m/km; 2 =

0.5–1.0 m/km; 3 = 1.1–2.0 m/km; 4 = 2.1–3.0 m/km;
5 = 3.1–5.0 m/km; 6 = 5.1–7.0 m/km; 7 =
7.1–10.0 m/km; 8 = 10.1–13.0 m/km; 9 =
13.1–17.0 m/km; 10 = ≥17.1 m/km)

3.18 1.46 1.00 8.00

Small-scale variables
Width Mean wetted channel width (m) 10.84 7.07 2.28 40.95
CVWidth Mean CV of wetted channel width 14.93 5.91 4.69 32.29
Depth Mean depth (m) 0.38 0.16 0.08 0.85
CVDepth Mean CV of depth 39.87 12.50 10.97 68.37
Velocity Mean current velocity (m/s) 0.30 0.13 0.09 0.65
Pool Percentage of reach area as pool 5.43 10.14 0.00 53.31
Riffle Percentage of reach area as riffle 17.24 17.98 0.00 74.21
Canopy Mean canopy cover (%) 39.69 24.21 0.03 87.30
PctBankCover Percentage of total bank covered (woody, nonwoody,

boulder or rip-rap, and roots)
50.61 16.38 18.33 100.00

Coarse Percentage of substrate that is coarse (coarse gravel,
cobble, and boulder)

21.15 25.58 0.00 88.51

Dist10m Percentage of banks with disturbance on the bank or
within 10 m of the bank

25.69 38.89 0.00 100.00

WoodyCover Percentage of reach area with woody debris, tree roots, or
small brush as cover

5.75 5.86 0.00 23.04

VegCover Percentage of reach area with filamentous algae, aquatic
macrophytes, overhanging vegetation, or terrestrial
vegetation as cover

5.96 10.33 0.00 50.06

Many of the large-scale variables were redundant (e.g., three
variables described stream size). To avoid multicollinearity, the
most ecologically relevant and interpretable variable from re-
dundant groups was retained. The variable describing flow was
excluded because streams with intermittent flow were not sam-
pled. Pearson’s product-moment correlations were calculated
for all pairs of large-scale variables to ensure that no highly
correlated (Pearson’s r ≥ |0.70|) variables were retained.

Small-scale habitat characteristics have been found to be as-
sociated with fish assemblage characteristics in Iowa (Rowe
et al. 2009b). Thus, 62 small-scale variables were created to
describe local physical habitat features. Reducing the number
of variables was essential for removing multicollinearity be-
tween variables and improving model interpretability. Ecolog-
ically relevant small-scale variables were selected as potential
explanatory variables. Pearson’s product-moment correlations
were calculated for all pairs of small-scale variables. When two

or more ecologically relevant variables were highly correlated,
the most relevant and interpretable variable was retained.

Habitat variables that were used to develop species occur-
rence models included 5 large-scale variables and 13 small-scale
variables (Table 1). The large-scale variables included tempera-
ture, subregion, stream order, elevation, and gradient. Tempera-
ture and subregion were categorical variables and therefore were
treated as factors rather than as continuous variables in model
development. The 13 small-scale variables included measures
of channel morphology, current velocity, canopy cover, bank
cover, substrate composition, instream cover, and distance to
disturbance.

Species occurrence models.—We used an information
theoretic approach (Burnham and Anderson 2002) to evaluate
competing multiple logistic regression models and to identify
habitat variables measured at multiple spatial scales that influ-
ence the occurrences of the seven fish SGCN. Multiple logistic
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TABLE 2. Model performance measures for large-scale, small-scale, and multiple-scale models of occurrence for seven Iowa fish species of greatest conservation
need (n = number of stream reaches sampled in each species’ historical distribution; CCR = correct classification rate expressed as a proportion; κ = Cohen’s
kappa value; P is associated with the null hypothesis that κ= 0).

Large-scale models Small-scale models Multiple-scale models

Species n Prevalence CCR κ P CCR κ P CCR κ P

Banded darter 80 0.40 0.78 0.54 <0.001 0.80 0.60 <0.001 0.83 0.64 <0.001
American brook lamprey 53 0.32 0.51 0.14 0.118 0.55 0.21 0.041 0.58 0.27 0.011
Ozark minnow 63 0.25 0.59 0.27 0.007 0.70 0.39 0.001 0.79 0.51 <0.001
Blackside darter 83 0.27 0.72 0.37 0.001 0.64 0.33 <0.001 0.80 0.54 <0.001
Southern redbelly dace 77 0.55 0.77 0.51 <0.001 0.71 0.40 <0.001 0.79 0.58 <0.001
Longnose dace 50 0.20 0.92 0.75 <0.001 0.92 0.77 <0.001 0.96 0.88 <0.001
Central mudminnow 34 0.21 0.85 0.47 0.047 0.91 0.74 <0.001 0.88 0.70 <0.001

regression analysis is a common multivariate approach for pre-
dicting the binary response of fish species presence or absence
(e.g., Porter et al. 2000; Rich et al. 2003; Rashleigh et al. 2005).
Using retained variables (i.e., the 5 large-scale variables and 13
small-scale variables), candidate multiple logistic regression
models were created for all possible combinations of variables
measured at a large scale, a small scale, and multiple scales (i.e.,
both large-scale and small-scale variables). Because large-scale
models could include a maximum of five variables, up to five
variables were allowed in all candidate models to eliminate the
possibility of small-scale and multiple-scale models explain-
ing more variation than large-scale models simply due to the
inclusion of more variables. Furthermore, to prevent model over-
fitting and spurious results, the maximum number of variables
allowed in a candidate model was 10% of the number of stream
reaches that were sampled within the species’ respective distri-
bution (Table 2). For example, we sampled 34 stream reaches
within the historical distribution of the central mudminnow,
and thus we only allowed up to three variables to be included
in models predicting the occurrence of central mudminnow.

Confidence model sets were selected from among all can-
didate models for each model type (large-scale, small-scale,
and multiple-scale models) based on Akaike’s information cri-
terion (AIC), and these confidence model sets were used to
create model-averaged models. The AIC reflects model parsi-
mony by measuring the goodness of fit while penalizing for
the number of parameters (Burnham and Anderson 2002). Re-
cently, the use of AIC corrected for small sample size (AICc) has
been common; however, Richards (2005) found that AICc did
not increase the likelihood of selecting the best-approximating
model. Thus, we used AIC rather than AICc. Richards (2005)
also suggested that an AIC difference (�AIC) between 4 and
7 should be used as a selection criterion for 95% confidence
that the best-approximating model is included in the confidence
model set. Thus, all candidate models with a �AIC of 6 or less
were included in a given confidence model set. Furthermore,
because more than one combination of variables was likely to
have evidence of being the best-approximating model, all mod-

els that were included in confidence model sets were averaged
to account for model selection uncertainty (Burnham and An-
derson 2002). Model-averaged coefficients were calculated by
weighting the coefficient values for each model in the confidence
model set by the models’ respective Akaike weights. The rel-
ative importance of habitat variables in confidence model sets
was assessed by summing the Akaike weights for all models
within the confidence model set in which the variable of interest
was included. Variables with summed Akaike weights of 0.60 or
greater were interpreted as important. Summed relative weights
must be interpreted carefully because they reflect the importance
of the habitat variable but not the strength of the relationship
(i.e., they do not account for coefficient values). All multiple
logistic regression analyses were performed with R software (R
Development Core Team 2009).

Logistic regression models predict the probability of species
presence as a value ranging from 0 to 1. Thresholds of 0.5
are often used in species presence–absence models, with values
greater than 0.5 being interpreted as presence and values less
than 0.5 being interpreted as absence (e.g., Porter et al. 2000;
Pont et al. 2005; Ruiz and Peterson 2007). However, 0.5 is not
always the most appropriate threshold because species preva-
lence can bias logistic regression scores toward the larger group
(i.e., present or absent; Fielding and Bell 1997). We used an
approach similar to that described by Olden and Jackson (2001)
to select optimum thresholds for maximizing the area under the
curve of the receiver operating characteristic plot for the training
data (i.e., the same data that were used to create the model). The
receiver operating characteristic plot is a graph of model sensi-
tivity versus 1 − specificity, where sensitivity is the proportion
of observed presences that are correctly predicted and speci-
ficity is the proportion of observed absences that are correctly
predicted. Optimal threshold values were chosen by assuming
that the costs of misclassifying a species as absent or present
were equal. The optimal threshold value and model-averaged
predictions for each species occurrence model were used to cal-
culate confusion matrix values and performance measures to
self-evaluate model performance after re-substituting the same
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1052 SINDT ET AL.

data that were used to parameterize the model (Fielding and
Bell 1997). The correct classification rate (CCR) is a simple
measure of the percentage of cases that are correctly predicted
by a model, but its interpretation can be biased by species preva-
lence (Olden et al. 2002). Therefore, the primary statistic used
to self-evaluate model performance was Cohen’s kappa (κ), an
index used to assess the correct classification of events (pres-
ence or absence) relative to that expected by random chance
(Cohen 1960). Kappa values less than or equal to zero indi-
cate that model performance is no better than random chance,
whereas a κ value of 1 indicates perfect model performance.
Landis and Koch (1977) arbitrarily characterized κ values of
less than 0.40 as indicating poor to fair model performance
and κ values greater than 0.40 as indicating moderate to near-
perfect model performance. Cohen’s κ is commonly used to
evaluate fish species presence–absence models (e.g., Olden and
Jackson 2001; Rashleigh et al. 2005; Hayer et al. 2008) and is
also used in the medical and remote sensing fields (Congalton
1991; Manel et al. 2001). Kappa has limitations and may be
overly sensitive to species prevalence (McPherson et al. 2004;
Vaughan and Omerod 2005); however, Manel et al. (2001) found
that κ was a robust indicator of model performance and was neg-
ligibly influenced by species prevalence. The SE, significance,
and 95% confidence interval of κ can be calculated and used to
test the null hypothesis that κ is equal to zero (Titus et al. 1984).
The κ values were calculated and significance tests (α = 0.05)
were performed using the fmsb package in R (R Development
Core Team 2009). The CCRs and κ values were used to assess
the performance of models and to evaluate the relative influence
of habitat variables measured at each spatial scale on species
occurrences.

Model validation.—The most robust model validation
techniques use data that are independent from those used to es-
timate the model parameters. Therefore, independent data were
used to validate and test the generality of species occurrence
models. Data were obtained from a previous study by Rowe
et al. (2009b) in which fish assemblages were sampled via
the Iowa Department of Natural Resources’ wadeable stream
bioassessment protocol (Wilton 2004) and physical habitats
were sampled by following the wadeable streams physical
habitat protocol of the U.S. Environmental Protection Agency’s
Environmental Monitoring and Assessment Program (EMAP;
Peck et al. 2006). Rowe et al. (2009b) analyzed data from 93
randomly selected wadeable streams across Iowa. However,
only 65 of the wadeable streams were sampled from the
Mississippi River drainage to which our models were con-
strained. Similar methods were used to sample fish, but the
methods used to quantify habitat characteristics were slightly
different from those used to collect data for our study; however,
in most applications it is unlikely that data will always be
collected with the exact same protocol. Thus, our use of data
collected with differing methodologies offers an opportunity
to validate the models with an independent data set and to test
the models’ generality for use with data collected by different

methods, thereby presenting a “conservative” assessment of
model accuracy.

Even though the habitat sampling methodologies of this study
were not identical to those used to collect the independent data,
many of the same small-scale habitat features were quantified,
and the large-scale variables could be easily obtained with a GIS
(ArcMap version 9.3). Rather than measuring depths across the
width of the stream reach, the EMAP protocol only measures
depths along the stream thalweg. To adjust the mean thalweg
depth to better represent mean depth, linear regression analysis
was used to estimate mean macrohabitat depth from the mean
of the maximum macrohabitat transect depths by using data
collected from all 84 stream reaches in our study. The linear
regression explained a large amount of the variation in mean
depth, with an r2 of 0.91 (P < 0.0001). Therefore, mean depth
was estimated using the equation

mean depth = (0.773 × mean thalweg depth) − 0.0224.

Similarly, the EMAP protocol does not include measurement
of current velocity. Therefore, we estimated mean current ve-
locity by using a linear regression equation developed with data
collected during our study:

mean current velocity = (0.0073 × mean channel width)

+ 0.2209.

Mean channel width explained a small amount of the varia-
tion in mean current velocity (r2 = 0.17; P < 0.0001), but this
was the strongest relationship between it and any of the other
habitat variables. We argue that using this equation to estimate
mean current velocity was more appropriate than assuming a
constant mean current velocity across sites. Among the small-
scale variables that were used to develop our species occurrence
models, the only one that could not be obtained from the EMAP
protocol for the independent data set was the proportion of banks
with disturbance on the bank or within 10 m of the bank. Because
missing values resulting from different sampling protocols is a
real-world scenario, all values for the distance to disturbance
variable were set to zero to simulate missing data. We hypothe-
size that having disturbance within 10 m of the bank is likely to
bias the models toward predicting the species as absent, and thus
we will obtain a conservative estimate of model performance.

Model-averaged multiple logistic regression models devel-
oped with large-scale, small-scale, and multiple-scale data were
used to predict the presence or absence of the seven SGCN by
using the habitat variables from the independent data set. Op-
timal thresholds were used to determine whether each species
was predicted to be present or absent in stream reaches that
were sampled within the species’ respective distribution. Model-
predicted presences and absences were compared with the actual
presence or absence of each species and were used to calculate
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HABITAT ASSOCIATIONS OF IOWA FISHES 1053

TABLE 3. Model-averaged parameters and optimal threshold values for large-scale (LS), small-scale (SS), and multiple-scale (MS) multiple logistic regression
models of species occurrence. Multiple logistic regression equations are in the form of P = eg(x)/[1 + eg(x)], where P = probability of occurrence and g(x) =
b0 + b1x1 + b2x2 + bkxk (b0 is the intercept, b1 to bk are coefficients, and x1 to xk are the variables). If P is greater than the optimal threshold value, the species
is predicted to be present. See text for definition of optimal threshold; variables are defined in Table 1.

American Southern
Banded brook Ozark Blackside redbelly Longnose Central
darter lamprey minnow darter dace dace mudminnow

LS or LS or LS or LS or LS or LS or LS or
Variable SS MS SS MS SS MS SS MS SS MS SS MS SS MS

LS or MS optimal
threshold

0.378 0.467 0.145 0.056 0.248 0.303 0.314 0.278 0.442 0.578 0.336 0.248 0.375 0.273

LS or MS intercept −9.952 −4.896 −14.918 −17.848 −16.699 −12.588 −11.007 −4.918 8.862 4.039 −12.669 −10.391 −3.643 0.540
SS optimal

threshold
0.316 0.206 0.206 0.212 0.417 0.282 0.352

SS intercept −2.356 −3.698 −4.676 3.484 −0.417 −4.478 −4.795

LS variables
Temperature 2

(warmwater)
0.205 0.201 0.331 −0.065 −0.030 −0.237 10.644 5.419 −9.355 −5.462 −0.203 −1.435 3.567 0.243

Subregion 2
(Eastern
Broadleaf Forest)

0.225 0.117 0.642 0.209 13.778 4.904 −0.120 −0.001 4.152 4.103 8.802 1.971 0.074 0.000

Order 1.542 0.280 1.023 0.018 −0.045 −0.043 −0.498 −0.638 −1.055 −0.496 0.521 0.586 0.028 0.000
Elevation 0.014 0.008 0.034 0.053 0.007 0.010 0.007 0.016 0.001 0.004 −0.012 −0.003 0.000 −0.001
Gradient 0.054 −0.014 −0.066 −0.016 0.013 0.000 −0.369 −0.135 0.077 0.030 1.206 1.339 −0.522 −1.168

SS variables
Width 0.205 0.179 0.107 0.128 0.001 0.000 0.003 0.002 −0.084 −0.082 0.004 0.002 0.026 0.015
CVWidth 0.021 0.012 0.025 0.013 0.012 0.005 −0.003 −0.001 −0.009 −0.003 −0.050 −0.127 0.005 0.001
Depth 0.655 0.301 0.010 0.275 0.128 0.042 1.258 3.044 −0.040 −0.100 0.241 0.122 0.071 0.005
CVDepth 0.027 0.020 0.048 0.010 0.110 0.115 −0.071 −0.059 0.036 0.006 0.013 0.025 0.043 0.018
Velocity 0.014 0.110 −0.454 −0.142 −3.238 −2.036 −3.232 −1.855 −0.346 −0.123 0.293 5.016 −5.712 −7.326
Pool 0.001 0.000 0.016 0.008 −0.049 −0.048 0.001 0.004 0.007 0.005 0.016 0.004 0.033 0.013
Riffle 0.000 0.001 −0.020 −0.001 −0.001 0.000 −0.002 −0.001 0.001 0.002 0.132 0.087 0.000 0.005
Canopy 0.000 0.000 0.000 0.000 −0.002 −0.001 0.005 0.004 −0.002 −0.002 −0.006 −0.003 0.015 0.010
PctBankCover −0.055 −0.059 −0.001 −0.005 0.007 0.003 −0.033 −0.057 0.009 0.003 −0.004 −0.001 0.035 0.013
Coarse 0.030 0.031 −0.003 −0.003 −0.002 −0.001 0.002 0.001 0.003 0.001 0.002 0.000 0.006 0.028
Dist10m 0.000 0.000 −0.019 −0.002 −0.039 −0.039 −0.001 −0.003 0.002 0.002 0.001 0.000 −0.042 −0.028
WoodyCover −0.006 −0.005 −0.006 −0.010 0.002 0.009 0.019 0.005 0.003 0.006 −0.053 −0.022 0.004 0.001
VegCover −0.001 −0.002 −0.038 −0.289 0.003 0.001 −0.004 −0.001 −0.025 −0.008 −0.136 −0.418 −0.002 −0.002

the same model performance measures (CCR and κ value) that
were examined for the self-evaluation of model performance.

RESULTS
The number of stream reaches that were sampled within the

historical distribution of the seven SGCN varied from 34 for the
central mudminnow to 83 for the blackside darter, and frequency
of occurrence varied from 0.20 for the longnose dace to 0.55 for
the southern redbelly dace (Table 2). Large-scale, small-scale,
and multiple-scale model-averaged models were created for all
seven species; as expected, the optimal threshold values differed
from the commonly used value of 0.5 (Table 3). Multiple-scale
models had greater κ values than most of the large- or small-
scale models, and small-scale models tended to have greater κ

values than large-scale models.

Species occurrence models that were developed with large-
scale habitat variables predicted the occurrences of six of the
seven species significantly better than chance (κ > 0.0, P ≤
0.05), and κ values varied from 0.14 for the American brook
lamprey to 0.75 for the longnose dace (mean κ = 0.44, SE =
0.07; Table 2). Large-scale models correctly predicted 51–92%
of species presences and absences, with a mean CCR of 73%
(SE = 5). The sum of Akaike weights for all models in confi-
dence model sets in which a variable occurred indicated that all
five large-scale variables were important in at least one of the
seven species models (Table 4). Stream order was an important
variable in four species models, elevation and gradient were im-
portant in three models, subregion was important in two models,
and temperature was important in one model. Four large-scale
variables were important in the blackside darter model, and
only one variable was important in Ozark minnow and central
mudminnow models.
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1054 SINDT ET AL.

TABLE 4. Relative importance and the direction of influence for independent variables in large-scale (LS), small-scale (SS), and multiple-scale (MS) species
occurrence models for seven Iowa fish species of greatest conservation need. Relative importance for a given variable is the sum of Akaike weights for all models
in the confidence model set (i.e., with Akaike’s information criterion difference [�AIC] ≤ 6) that included the variable of interest. Values greater than 0.60 (shown
in bold italics) provide substantial evidence that the variable is important for predicting the occurrence of the species. Variables are defined in Table 1.

American Southern
Banded brook Ozark Blackside redbelly Longnose Central
darter lamprey minnow darter dace dace mudminnow

LS or LS or LS or LS or LS or LS or LS or
Variable SS MS SS MS SS MS SS MS SS MS SS MS SS MS

LS variables
Temperature 2

(warmwater)
0.29 0.13 0.31 −0.08 −0.25 −0.14 0.65 0.32 −0.58 −0.34 −0.30 −0.34 0.25 0.02

Subregion 2 (Eastern
Broadleaf Forest)

0.35 0.11 0.44 0.15 0.82 0.29 −0.30 −0.04 1.00 1.00 0.51 0.12 0.24 −0.02

Order 1.00 0.25 0.84 0.11 −0.27 −0.10 −0.67 −0.48 −0.96 −0.50 0.48 0.35 0.24 −0.02
Elevation 0.89 0.49 1.00 1.00 0.59 0.56 0.61 0.73 0.27 0.11 −0.65 −0.17 −0.24 −0.04
Gradient 0.33 −0.08 −0.32 −0.09 0.25 −0.04 −0.80 −0.28 0.37 0.15 1.00 0.67 −0.69 −0.76

SS variables
Width 0.99 0.87 0.85 0.87 0.12 −0.05 0.13 0.05 −0.92 −0.68 0.20 0.07 0.16 0.09
CVWidth 0.27 0.16 0.27 0.15 0.18 0.08 −0.10 −0.04 −0.19 −0.11 −0.37 −0.57 0.06 0.03
Depth 0.22 0.10 0.15 0.12 0.11 0.05 0.37 0.45 −0.19 −0.12 0.19 0.05 0.04 0.02
CVDepth 0.44 0.33 0.60 0.18 0.99 1.00 −0.94 −0.62 0.72 0.20 0.26 0.21 0.30 0.13
Velocity 0.11 0.07 −0.16 −0.08 −0.48 −0.31 −0.62 −0.31 −0.19 −0.11 0.19 0.39 −0.50 −0.53
Pool 0.11 0.05 0.33 0.16 −0.61 −0.58 0.11 0.10 0.24 0.16 0.31 0.08 0.30 0.12
Riffle −0.12 0.08 −0.50 −0.09 −0.11 −0.05 −0.14 −0.05 0.14 0.13 1.00 0.68 −0.02 0.07
Canopy 0.10 −0.05 0.10 −0.09 −0.15 −0.07 0.29 0.18 −0.19 −0.15 −0.25 −0.09 0.29 0.19
PctBankCover −0.92 −0.91 −0.10 −0.16 0.24 0.11 −0.74 −0.91 0.33 0.16 −0.20 −0.05 0.36 0.15
Coarse 0.94 0.91 −0.18 −0.14 −0.14 −0.08 0.18 0.09 0.24 0.11 0.19 0.05 0.14 0.36
Dist10m −0.10 0.05 −0.84 −0.16 −1.00 −1.00 −0.13 −0.05 0.11 0.18 0.19 0.05 −0.51 −0.29
WoodyCover −0.15 −0.09 −0.11 −0.14 0.10 0.04 0.27 0.09 0.14 0.14 −0.32 −0.12 0.07 0.02
VegCover −0.11 −0.06 −0.26 −0.87 0.14 0.06 −0.16 −0.06 −0.52 −0.21 −0.39 −0.42 −0.05 −0.04

Species occurrence models that were developed with small-
scale variables predicted the occurrences of all seven species
significantly better than chance, with κ values varying from
0.21 for the American brook lamprey to 0.77 for the longnose
dace (mean κ = 0.49, SE = 0.08). Small-scale models correctly
classified 55–92% of species presences and absences, with a
mean CCR of 75% (SE = 5). Of the 13 small-scale variables
that were hypothesized to influence fish species distributions,
9 of the variables were identified as important in small-scale
models (Table 4). Mean stream width and mean CV of depth
were the variables that were most commonly designated as im-
portant; they were identified as important in the small-scale
models for three species. The number of important small-scale
variables varied from zero in the central mudminnow model to
three in the banded darter, Ozark minnow, and blackside darter
models. Although the small-scale model performed better than
the large-scale model for central mudminnow, no small-scale
variables were identified as important; this is likely attributable
to the small number of stream segments (i.e., 34) that were sam-
pled within the central mudminnow’s distribution, and spurious
correlations probably accounted for the explained variation in
occurrence.

For six of the seven species, multiple-scale models had a
higher κ value and CCR than either the large- or small-scale
models (Table 2). The κ values were significantly greater than
zero for all multiple-scale models, varying from 0.27 for the
American brook lamprey to 0.88 for the longnose dace (mean
κ = 0.59, SE = 0.07). Six of the multiple-scale models had
κ values greater than 0.40, suggesting moderate to substantial
performance. The CCRs for most of the multiple-scale models
were relatively high (79–96%), but the percentage of correctly
predicted presences and absences was low (CCR = 58%) for
the American brook lamprey (Table 2). As expected, the habitat
variables identified as important in multiple-scale models were
similar to those identified for the large-scale and small-scale
models; however, only three of the large-scale variables were
important in at least one multiple-scale model (Table 4). Al-
though stream order was important in the large-scale models for
four species, stream width (a small-scale variable) was selected
as a more appropriate measure of stream size in the multiple-
scale models. Six of the variables that were important in small-
scale models were also important in multiple-scale models, and
the variable representing the availability of instream vegetation
cover (e.g., aquatic macrophytes and overhanging vegetation)
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HABITAT ASSOCIATIONS OF IOWA FISHES 1055

FIGURE 2. Qualitative associations of seven fish species of greatest conservation need with large-scale and small-scale habitat variables measured in wadeable
Iowa streams. Quantitative relationships supporting these associations were primarily obtained from the multiple-scale model summary statistics shown in Tables 4
and 5.

was identified as important in the American brook lamprey’s
multiple-scale model even though it was not important in the
small-scale model.

Multiple-scale models predicted the occurrence of most fish
SGCN with the greatest accuracy; thus, the habitat variables
that were identified as important in each species’ multiple-scale
model were weighted the most for interpretation. Stream size
(stream order and stream width) or gradient variables were im-
portant in multiple-scale models for five of the seven species
(Table 4). Thus, the importance of these variables in species oc-
currence models was used in combination with model-averaged
coefficient values to conceptualize the relative associations with
the occurrence of each species (Figure 2). For example, the
occurrence of southern redbelly dace was associated with nar-
row streams, whereas the occurrence of banded darters and
American brook lampreys was associated with larger streams.
Similarly, the occurrence of longnose dace was associated with
high-gradient streams, while central mudminnow occurrence
was associated with low-gradient streams. Neither stream size
nor gradient was important in the multiple-scale models for the
blackside darter and Ozark minnow, but the large-scale model
showed that blackside darter occurrence was associated with
smaller, low-gradient streams. Furthermore, up to three other
variables were identified as important in each species’ multiple-
scale model.

Stream reaches in the independent data set were sam-
pled from 28 of the 34 eight-digit HUC watersheds in the
Mississippi River drainage of Iowa. From 15 to 54 stream
reaches were sampled within the selected species’ historical
distributions and each species was collected in 1 (Ozark min-
now and central mudminnow) to 16 (southern redbelly dace)
stream reaches (Table 5). When applied to the independent data
set, large-scale models were able to predict the occurrences
of banded darters, American brook lampreys, southern redbelly
dace, and longnose dace significantly better than random chance,
but they could not predict the occurrence of Ozark minnow,
blackside darters, or central mudminnow better than random
chance (Table 5). Although small-scale models performed bet-
ter than large-scale models for the model development data set,
when the small-scale models were applied to the independent
data set, they only predicted the occurrences of banded darters
and longnose dace better than would be expected by random
chance. When variables measured at both the large and small
scales were included in the multiple-scale models, the pres-
ence or absence of Ozark minnow, blackside darters, and cen-
tral mudminnow was still not predicted more accurately than
would be expected by chance. However, multiple-scale mod-
els predicted the occurrences of banded darters, southern red-
belly dace, and longnose dace better than large- or small-scale
models.
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1056 SINDT ET AL.

TABLE 5. Model performance measures for large-scale, small-scale, and multiple-scale species occurrence models when validated against an independent data
set collected from 65 wadeable stream reaches in Iowa (n = number of stream reaches sampled in each species’ historical distribution; CCR = correct classification
rate expressed as a proportion; κ= Cohen’s kappa value; P is associated with the null hypothesis that κ= 0).

Large-scale models Small-scale models Multiple-scale models

Species n Prevalence CCR κ P CCR κ P CCR κ P

Banded darter 40 0.20 0.68 0.33 0.021 0.83 0.48 0.016 0.90 0.66 0.004
American brook lamprey 26 0.23 0.77 0.52 0.006 0.42 0.08 0.309 0.73 0.41 0.026
Ozark minnow 28 0.04 0.50 0.06 0.363 0.54 0.07 0.353 0.82 0.24 0.242
Blackside darter 54 0.26 0.63 0.19 0.105 0.67 0.17 0.152 0.72 0.18 0.169
Southern redbelly dace 40 0.41 0.66 0.35 0.009 0.51 0.10 0.236 0.71 0.44 0.002
Longnose dace 35 0.23 0.74 0.40 0.019 0.86 0.53 0.018 0.89 0.68 0.002
Central mudminnow 15 0.07 0.87 0.44 0.167 0.27 −0.14 0.764 0.73 0.25 0.236

DISCUSSION
An understanding of factors that influence the distribution of

fish species is vital for conservation success, and models that
predict species occurrences may serve as a useful tool for fish-
eries managers. We developed models that accurately predicted
the occurrences of all seven Iowa fish SGCN and identified im-
portant associations with both large-scale and small-scale habi-
tat features. Most species occurrences were effectively predicted
by using either large- or small-scale variables, and the most in-
fluential habitat features and spatial scale varied by species. As
hypothesized, the inclusion of variables that were measured at
both spatial scales predicted the occurrences of fish SGCN with
the greatest accuracy.

Physical and biological changes along the longitudinal gra-
dients of streams are well documented (Vannote et al. 1980),
and large-scale environmental gradients have been shown to in-
fluence the longitudinal distribution of fish species (Rahel and
Hubert 1991; Quist et al. 2004). Consistent with the results
of others, we found that large-scale measures of stream order
(Paller 1994), elevation (Quist et al. 2004), channel gradient
(Pont et al. 2005), temperature (Buisson et al. 2008; Lyons et al.
2010), and aquatic subregion each had an important influence on
the distribution of at least one of the seven fish species. Stream
order, elevation, and gradient were among the most important
variables in large-scale models, suggesting that Iowa stream fish
assemblages may be strongly influenced by longitudinal gradi-
ents and stream size thresholds. Similarly, Quist et al. (2004)
showed that fishes persisted within specific elevation and stream
width boundaries in Wyoming streams. In the present study,
we found that southern redbelly dace were common in small
second- and third-order streams, but banded darters and Amer-
ican brook lampreys were never collected from a stream that
was less than third order. Paller (1994) reported similar associ-
ations between fish assemblages and stream order in following
patterns of species additions and replacements. Models for three
Iowa fish SGCN identified important associations with stream
gradient. Longnose dace were generally sampled from higher-
gradient streams, including the two highest gradient streams

sampled (i.e., 7.0–13.0 m/km). In contrast, blackside darters
and central mudminnow were only sampled in low-gradient
streams for which gradient did not exceed 3.0 m/km. The pos-
itive association between longnose dace occurrence and gradi-
ent likely reflects this species’ similar positive association with
riffle habitat availability. This result is consistent with what oth-
ers have reported as common longnose dace habitat in Iowa
(Harlan and Speaker 1969). Central mudminnow are suggested
to occupy habitats with little to no current, silty substrates, and
usually the presence of vegetation (Harlan and Speaker 1969;
Martin-Bergmann and Gee 1985); thus, high-gradient streams
would not be expected to provide suitable habitat conditions for
central mudminnow.

Iowa topography is relatively gentle, and the elevation of
streams sampled for this study only varied from 189 to 387 m.
Thus, the importance of elevation in the occurrence models for
four of the species was unexpected. Quist et al. (2004) sug-
gested that elevation acts as a proxy for temperature, which
influences the survival, growth, reproduction, and distribution
of fish (Buisson et al. 2008; Lyons et al. 2010; Robinson et al.
2010). Although elevation probably does not act as a surrogate
measure for temperature in Iowa, differences in elevation likely
correspond to differences in underlying geology and climate
across the state. The subregion variable similarly differentiates
between two Iowa regions that have different underlying phys-
iographic features. Heitke et al. (2006) showed that fish assem-
blages and physical habitat conditions vary significantly across
Iowa’s ecoregions. Subregions may also represent regions with
unique aquatic biodiversity as a result of processes such as spe-
ciation, colonization, and extinction. For example, there is a
unique group of fishes—including the Ozark minnow—that ex-
hibits two disjunct distributions: one distribution extends into
the Eastern Broadleaf Forest subregion of Iowa, and the other is
found in the northern Ozarks of southern Missouri and surround-
ing states. Berendzen et al. (2010) showed that this unique, dis-
junct distribution is likely attributable to the expansion of fishes
from the northern Ozarks into the Paleozoic Plateau of Iowa af-
ter glacial periods, followed by isolation of the two populations
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HABITAT ASSOCIATIONS OF IOWA FISHES 1057

as suitable habitats between the two regions were lost due to
glacial deposition of loess and till. Our results were consistent
with this hypothesis and showed that the occurrences of Ozark
minnow and southern redbelly dace were positively associated
with the Eastern Broadleaf Forest subregion. Our results also
suggest that southern redbelly dace are not constrained by spe-
cific small-scale habitat features within stream reaches where
large-scale habitat conditions are suitable. These results are not
surprising, as southern redbelly dace are recognized as being
prevalent in headwater streams of the Eastern Broadleaf Forest
subregion in Iowa (Harlan and Speaker 1969). Thus, the sole
use of GIS-measured variables representing stream order and
subregion can accurately predict southern redbelly dace occur-
rence in the Mississippi River drainage of Iowa. In contrast,
even though the distribution of Ozark minnow is constrained
to northeast Iowa (Harlan and Speaker 1969), small-scale vari-
ables predicted the occurrence of Ozark minnow better than the
subregion variable or any combination of large-scale variables.
Ultimately, the multiple-scale model was able to predict the
occurrence of Ozark minnow with the greatest accuracy and in-
dicated that Ozark minnow occurrence was positively associated
with depth variability and negatively associated with proximity
to anthropogenic disturbance. This is consistent with the work
of Pflieger (1997) who reported that Ozark minnow inhabit ar-
eas of slow current in fast-flowing streams, which is indicative
of high depth variability.

Similar to large-scale variables, we found that many small-
scale variables were important for predicting the occurrence of
fish SGCN. Understanding the small-scale physical habitat re-
quirements of stream fish species has long been a central theme
of fish ecologists (Schlosser 1982; Hubert and Rahel 1989).
Early work by Gorman and Karr (1978) related fish species to
specific instream physical habitat measures (e.g., depth, sub-
strate, and velocity) and showed a positive relationship between
species diversity and habitat diversity. Later, Leonard and Orth
(1988), among others (e.g., Schlosser 1982; Lobb and Orth
1991), identified guilds of species that were associated with sim-
ilar instream physical habitat features. Our results were similar
in that a variety of small-scale habitat variables (channel width,
depth variability, current velocity, coarse substrate, pool and
riffle habitat availability, bank characteristics, vegetation, and
distance to disturbance) were important in at least one species’
occurrence model. The CVs in depth and width variables were
assumed to represent habitat complexity and thus the ability to
support greater biodiversity (Gorman and Karr 1978). The oc-
currences of southern redbelly dace and Ozark minnow were
positively associated with depth variability; however, blackside
darter occurrence was negatively associated with depth vari-
ability. The occurrence of blackside darters was also negatively
associated with covered banks. The negative association with
depth variability and covered banks likely reflects the com-
mon occurrences of blackside darters in channelized streams of
the Central Plains subregion. As a result of stream straighten-
ing, bank erosion generally increases, pool and riffle habitats

become filled and covered with fine sediments, and the variabil-
ity in water depth and current velocity decreases (Bulkley 1975;
Zimmer and Bachmann 1978).

Coarse substrates can provide essential fish spawning habi-
tat and refuge from current and predators. Additionally, coarse
substrates provide excellent habitat for macroinvertebrate prey
and are often associated with greater ecological integrity and
fish biodiversity (Heitke et al. 2006; Rowe et al. 2009b). In our
study, the banded darter was the only species for which occur-
rence was positively associated with the proportion of coarse
substrate. Banded darter occurrence was also positively associ-
ated with stream width and was negatively related to covered
banks. Anecdotal reports are similar to our results and suggest
that banded darters occur in deep riffles over rocky substrate
(Harlan and Speaker 1969; Cross and Collins 1995).

The spatial scale that is most influential on stream fauna
is context dependent and varies by species and system. Monti
and Legendre (2009) showed that environmental factors were
important in structuring biotic communities in high-flow lotic
systems but that biotic interactions were more influential in low-
flow lotic systems. Pont et al. (2005) showed that the influences
of regional-scale and small-scale processes on species occur-
rence were species specific rather than system specific. Simi-
larly, we found differences in the relative influence of large-scale
and small-scale habitat features on each fish species. Thus, it
is important to determine the appropriate scale for management
efforts on a case-by-case basis because models that are devel-
oped in one region or for one species are unlikely to exhibit
generality to another region or species. Many studies have fo-
cused on determining the spatial scale that is most influential
on stream biotic communities, but the results are inconsistent.
For example, Creque et al. (2005) developed models to predict
the density of five sport fish species in Michigan rivers by using
only GIS-measured landscape variables and only small-scale
habitat variables; models that were developed with landscape
variables explained more variation than models that were devel-
oped with small-scale variables. In contrast, Rich et al. (2003)
found that variation in the occurrence of bull trout Salvelinus
confluentus in a Montana watershed was explained to a greater
extent by small-scale abiotic and biotic variables than by large-
scale variables. Although either large- or small-scale variables
may accurately predict the distribution of fish species, Leftwich
et al. (1997) suggested that incorporating variables from multi-
ple spatial scales is likely to improve the generality of models
and to provide the greatest interpretive value. Our results support
this conclusion in that models incorporating both large-scale and
small-scale variables predicted fish species occurrences with the
greatest accuracy. Specifically, our multiple-scale models cor-
rectly predicted the occurrences of the seven species 58–96%
of the time, with κ values varying from 0.27 to 0.88. Pont et al.
(2005) similarly used multiple logistic regression models with
variables measured at multiple spatial scales to predict the oc-
currences of 13 common fish species in France; they reported
CCRs of 71–92% and κ values from 0.10 to 0.61. When applied
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to an independent data set, our multiple-scale models generally
exhibited better performance than the large- or small-scale mod-
els. Specifically, the occurrences of banded darters, southern
redbelly dace, and longnose dace were predicted considerably
better by multiple-scale models than by single-scale models.
These results emphasize the importance of understanding the
influence of factors acting at multiple spatial scales before mak-
ing important conservation decisions. The largest spatial scale
at which factors are constraining species occurrences should be
treated as a limiting factor; unless management efforts address
issues at that scale, the success of such efforts will be limited.
For example, increasing fish species diversity with small-scale
habitat manipulations may be unsuccessful if water quality or
connectivity issues are the limiting factor (Tonn 1990; Pretty
et al. 2003). Results from this study suggest that habitat restora-
tion efforts to create riffle habitats for longnose dace could be
unsuccessful if implemented in low-gradient streams.

Despite the large number of habitat variables considered in
our species occurrence models, none of the variables provided
measures of temporal variability, which may have the ability to
increase predictive power. For example, the timing of flooding
events may greatly influence fish assemblages (Harvey 1987).
In Oregon, Pearson et al. (1992) documented changes in fish
assemblages before and after flood events and linked assem-
blage resilience to flood events with hydraulic complexity. As
a result of agricultural practices (e.g., drainage tiling and chan-
nelization) in Iowa, the hydrologic regimes of stream systems
are highly altered, and the intensity, timing, and frequency of
flood events are likely to influence aquatic communities (Meyers
et al. 2010). Similarly, the location and magnitude of fish barriers
(e.g., dams, culverts, and grade-control structures) can fragment
populations and prevent source populations from re-colonizing
suitable habitats (Compton et al. 2008; Litvan et al. 2008). Vari-
ables that characterize water quality and biotic interactions may
also explain further variation in species occurrences. For exam-
ple, predation and competition have been shown to influence
fish assemblage structure (Fausch and White 1981; Power et al.
1985), and variables characterizing the presence of competitors
or the abundance of predators have been used to improve pre-
dictive power in recent species distribution models (Rich et al.
2003; Quist et al. 2005). The number of factors that potentially
influence fish assemblages and species distributions is immea-
surable; therefore, understanding the factors that explain the
most variation in species occurrences and the linkages between
those factors across spatial scales will improve the efficiency of
conservation efforts.

Our study is one of the few studies that have used an in-
dependent data set to validate fish species occurrence models
and to quantify confidence in model predictions (e.g., Leftwich
et al. 1997; Steen et al. 2008). Most often, species occurrence
models fail to accurately predict species distributions outside of
the region for which the models were developed. For instance,
Porter et al. (2000) developed models that predicted the occur-
rence of 13 fish species in the Blackwater River drainage, British

Columbia, with CCRs of 73–90%, but the accuracy of the mod-
els greatly decreased when they were applied to data collected
in a distant drainage. Results of our model validation with an
independent data set showed that large-scale and multiple-scale
models were able to predict the occurrences of banded darters,
American brook lampreys, southern redbelly dace, and long-
nose dace better than random chance. In a concurrent study
(Sindt et al. 2012), we also found that models created with
large-scale explanatory variables (Iowa Aquatic Gap Analysis
Project models; Loan-Wilsey et al. 2005) predicted the occur-
rences of banded darters, southern redbelly dace, and longnose
dace better than would be expected by random chance, but this
was not the case for nine other species, including the Ameri-
can brook lamprey, Ozark minnow, and blackside darter. Thus,
in Iowa, the most effective variables for predicting the occur-
rences of many fish SGCN, including the Ozark minnow and
blackside darter, are still undetermined. The combined results
of the present study and our previous study (Sindt et al. 2012)
further emphasize the importance of understanding the most ap-
propriate scale for management and conservation efforts on a
species-by-species and system-by-system basis. Therefore, we
caution that even though several of our models exhibited gen-
erality when validated with an independent data set, they might
not be effective outside of the Mississippi River drainage in
Iowa.

An understanding of factors that shape the distribution of fish
species across spatial scales is important for resource managers
and is vital to conservation success. For this study, we adopted
an exploratory approach to identify abiotic variables measured
at two spatial scales influencing the occurrences of fish SGCN in
wadeable Iowa streams and to provide insight into species ecol-
ogy. Our results suggest that managing for stream fish biodiver-
sity requires the protection and restoration of habitat complexity
across a broad spectrum of large-scale habitat conditions. The
performance of our models complements other studies in which
large-scale and small-scale habitat features were found to ex-
plain variability in species occurrences. However, we have also
shown that the most influential spatial scale and habitat vari-
ables are species specific and that the incorporation of variables
measured at multiple spatial scales provides the greatest model
generality.
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